Cargando…
Exploring Successful Parameter Region for Coarse-Grained Simulation of Biomolecules by Bayesian Optimization and Active Learning
Accompanied with an increase of revealed biomolecular structures owing to advancements in structural biology, the molecular dynamics (MD) approach, especially coarse-grained (CG) MD suitable for macromolecules, is becoming increasingly important for elucidating their dynamics and behavior. In fact,...
Autores principales: | Kanada, Ryo, Tokuhisa, Atsushi, Tsuda, Koji, Okuno, Yasushi, Terayama, Kei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175118/ https://www.ncbi.nlm.nih.gov/pubmed/32245275 http://dx.doi.org/10.3390/biom10030482 |
Ejemplares similares
-
Enhanced Conformational Sampling with an Adaptive
Coarse-Grained Elastic Network Model Using Short-Time All-Atom Molecular
Dynamics
por: Kanada, Ryo, et al.
Publicado: (2022) -
Recent Advances in Coarse-Grained Models for Biomolecules and Their Applications
por: Singh, Nidhi, et al.
Publicado: (2019) -
Optimal Coarse-Grained Site Selection in Elastic Network
Models of Biomolecules
por: Diggins, Patrick, et al.
Publicado: (2018) -
Single-Image Super-Resolution
Improvement of X-ray
Single-Particle Diffraction Images Using a Convolutional Neural Network
por: Tokuhisa, Atsushi, et al.
Publicado: (2022) -
Bayesian selection for coarse-grained models of liquid water
por: Zavadlav, Julija, et al.
Publicado: (2019)