Cargando…
Evaluation of Enamel Topography after Debonding Orthodontic Ceramic Brackets by Different Er,Cr:YSGG and Er:YAG Lasers Settings
In the last decade, the success of lasers in simplifying many dental procedures has heightened the need for research in the orthodontic field, in order to evaluate the benefits of laser-assisted ceramic brackets debonding. Conventional ceramic brackets removal delivers a high shear bond strength (SB...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175227/ https://www.ncbi.nlm.nih.gov/pubmed/31936500 http://dx.doi.org/10.3390/dj8010006 |
Sumario: | In the last decade, the success of lasers in simplifying many dental procedures has heightened the need for research in the orthodontic field, in order to evaluate the benefits of laser-assisted ceramic brackets debonding. Conventional ceramic brackets removal delivers a high shear bond strength (SBS), which might lead to enamel damage. Nowadays, debonding ceramic brackets by Er:YAG laser seems a viable alternative technique; however, there is no data on the use of Er,Cr:YSGG in the literature. We aimed to evaluate the difference in enamel topography derived from different erbium laser settings used during debonding. One hundred and eighty bovine incisors teeth were randomly divided into fifteen experimental groups, according to different erbium laser settings using scanning methods. SBS testing was performed after debonding; stereomicroscopic and SEM analyses were done after cleaning the remaining adhesive so as to assess the incidence of enamel microcracks formation and enamel loss. There were no statistically significant differences between the proportions of teeth with normal enamel topography within the control group when compared with any of the Er:YAG groups. However, the proportion of teeth with a normal enamel topography in Er,Cr:YSGG was 4 W/20 Hz (83.3%) and in Er:YAG was 5 W/20 Hz (91.7%), which was statistically significantly higher than the control group (41.7%). The selection of erbium lasers’ optimal parameters during debonding influences the enamel topography. When considering the evaluation of both microscopic and statistical analyses, irradiation by Er:YAG (120 mJ/40 Hz) displayed a significant reduction in microcracks compared with conventional debonding, even though some microstructural changes in the enamel could be noted. Er,Cr:YSGG (4 W/20 Hz) respected the enamel topography the most out of the studied groups. |
---|