Cargando…

Membrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzene

The non‐covalent affinity of photoresponsive molecules to biotargets represents an attractive tool for achieving effective cell photo‐stimulation. Here, an amphiphilic azobenzene that preferentially dwells within the plasma membrane is studied. In particular, its isomerization dynamics in different...

Descripción completa

Detalles Bibliográficos
Autores principales: Paternò, Giuseppe Maria, Colombo, Elisabetta, Vurro, Vito, Lodola, Francesco, Cimò, Simone, Sesti, Valentina, Molotokaite, Egle, Bramini, Mattia, Ganzer, Lucia, Fazzi, Daniele, D'Andrea, Cosimo, Benfenati, Fabio, Bertarelli, Chiara, Lanzani, Guglielmo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175258/
https://www.ncbi.nlm.nih.gov/pubmed/32328424
http://dx.doi.org/10.1002/advs.201903241
_version_ 1783524796039954432
author Paternò, Giuseppe Maria
Colombo, Elisabetta
Vurro, Vito
Lodola, Francesco
Cimò, Simone
Sesti, Valentina
Molotokaite, Egle
Bramini, Mattia
Ganzer, Lucia
Fazzi, Daniele
D'Andrea, Cosimo
Benfenati, Fabio
Bertarelli, Chiara
Lanzani, Guglielmo
author_facet Paternò, Giuseppe Maria
Colombo, Elisabetta
Vurro, Vito
Lodola, Francesco
Cimò, Simone
Sesti, Valentina
Molotokaite, Egle
Bramini, Mattia
Ganzer, Lucia
Fazzi, Daniele
D'Andrea, Cosimo
Benfenati, Fabio
Bertarelli, Chiara
Lanzani, Guglielmo
author_sort Paternò, Giuseppe Maria
collection PubMed
description The non‐covalent affinity of photoresponsive molecules to biotargets represents an attractive tool for achieving effective cell photo‐stimulation. Here, an amphiphilic azobenzene that preferentially dwells within the plasma membrane is studied. In particular, its isomerization dynamics in different media is investigated. It is found that in molecular aggregates formed in water, the isomerization reaction is hindered, while radiative deactivation is favored. However, once protected by a lipid shell, the photochromic molecule reacquires its ultrafast photoisomerization capacity. This behavior is explained considering collective excited states that may form in aggregates, locking the conformational dynamics and redistributing the oscillator strength. By applying the pump probe technique in different media, an isomerization time in the order of 10 ps is identified and the deactivation in the aggregate in water is also characterized. Finally, it is demonstrated that the reversible modulation of membrane potential of HEK293 cells via illumination with visible light can be indeed related to the recovered trans→cis photoreaction in lipid membrane. These data fully account for the recently reported experiments in neurons, showing that the amphiphilic azobenzenes, once partitioned in the cell membrane, are effective light actuators for the modification of the electrical state of the membrane.
format Online
Article
Text
id pubmed-7175258
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-71752582020-04-23 Membrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzene Paternò, Giuseppe Maria Colombo, Elisabetta Vurro, Vito Lodola, Francesco Cimò, Simone Sesti, Valentina Molotokaite, Egle Bramini, Mattia Ganzer, Lucia Fazzi, Daniele D'Andrea, Cosimo Benfenati, Fabio Bertarelli, Chiara Lanzani, Guglielmo Adv Sci (Weinh) Communications The non‐covalent affinity of photoresponsive molecules to biotargets represents an attractive tool for achieving effective cell photo‐stimulation. Here, an amphiphilic azobenzene that preferentially dwells within the plasma membrane is studied. In particular, its isomerization dynamics in different media is investigated. It is found that in molecular aggregates formed in water, the isomerization reaction is hindered, while radiative deactivation is favored. However, once protected by a lipid shell, the photochromic molecule reacquires its ultrafast photoisomerization capacity. This behavior is explained considering collective excited states that may form in aggregates, locking the conformational dynamics and redistributing the oscillator strength. By applying the pump probe technique in different media, an isomerization time in the order of 10 ps is identified and the deactivation in the aggregate in water is also characterized. Finally, it is demonstrated that the reversible modulation of membrane potential of HEK293 cells via illumination with visible light can be indeed related to the recovered trans→cis photoreaction in lipid membrane. These data fully account for the recently reported experiments in neurons, showing that the amphiphilic azobenzenes, once partitioned in the cell membrane, are effective light actuators for the modification of the electrical state of the membrane. John Wiley and Sons Inc. 2020-03-06 /pmc/articles/PMC7175258/ /pubmed/32328424 http://dx.doi.org/10.1002/advs.201903241 Text en © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Paternò, Giuseppe Maria
Colombo, Elisabetta
Vurro, Vito
Lodola, Francesco
Cimò, Simone
Sesti, Valentina
Molotokaite, Egle
Bramini, Mattia
Ganzer, Lucia
Fazzi, Daniele
D'Andrea, Cosimo
Benfenati, Fabio
Bertarelli, Chiara
Lanzani, Guglielmo
Membrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzene
title Membrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzene
title_full Membrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzene
title_fullStr Membrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzene
title_full_unstemmed Membrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzene
title_short Membrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzene
title_sort membrane environment enables ultrafast isomerization of amphiphilic azobenzene
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175258/
https://www.ncbi.nlm.nih.gov/pubmed/32328424
http://dx.doi.org/10.1002/advs.201903241
work_keys_str_mv AT paternogiuseppemaria membraneenvironmentenablesultrafastisomerizationofamphiphilicazobenzene
AT colomboelisabetta membraneenvironmentenablesultrafastisomerizationofamphiphilicazobenzene
AT vurrovito membraneenvironmentenablesultrafastisomerizationofamphiphilicazobenzene
AT lodolafrancesco membraneenvironmentenablesultrafastisomerizationofamphiphilicazobenzene
AT cimosimone membraneenvironmentenablesultrafastisomerizationofamphiphilicazobenzene
AT sestivalentina membraneenvironmentenablesultrafastisomerizationofamphiphilicazobenzene
AT molotokaiteegle membraneenvironmentenablesultrafastisomerizationofamphiphilicazobenzene
AT braminimattia membraneenvironmentenablesultrafastisomerizationofamphiphilicazobenzene
AT ganzerlucia membraneenvironmentenablesultrafastisomerizationofamphiphilicazobenzene
AT fazzidaniele membraneenvironmentenablesultrafastisomerizationofamphiphilicazobenzene
AT dandreacosimo membraneenvironmentenablesultrafastisomerizationofamphiphilicazobenzene
AT benfenatifabio membraneenvironmentenablesultrafastisomerizationofamphiphilicazobenzene
AT bertarellichiara membraneenvironmentenablesultrafastisomerizationofamphiphilicazobenzene
AT lanzaniguglielmo membraneenvironmentenablesultrafastisomerizationofamphiphilicazobenzene