Cargando…
Machine Learning to Identify Flexibility Signatures of Class A GPCR Inhibition
We show that machine learning can pinpoint features distinguishing inactive from active states in proteins, in particular identifying key ligand binding site flexibility transitions in GPCRs that are triggered by biologically active ligands. Our analysis was performed on the helical segments and loo...
Autores principales: | Bemister-Buffington, Joseph, Wolf, Alex J., Raschka, Sebastian, Kuhn, Leslie A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175283/ https://www.ncbi.nlm.nih.gov/pubmed/32183371 http://dx.doi.org/10.3390/biom10030454 |
Ejemplares similares
-
Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition
por: Raschka, Sebastian, et al.
Publicado: (2020) -
Phython machine learning : unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics /
por: Raschka, Sebastian
Publicado: (2016) -
Python machine learning: machine learning and deep learning with Python, scikit-learn, and TensorFlow
por: Raschka, Sebastian, et al.
Publicado: (2017) -
Python machine learning: machine learning and deep learning with Python, scikit-learn, and TensorFlow 2
por: Raschka, Sebastian, et al.
Publicado: (2019) -
Python machine learning : aprendizaje automático y aprendizaje profundo con Python, scikit-learn y TensorFlow /
por: Raschka, Sebastian
Publicado: (2019)