Cargando…

Multifunctional Polymer Memory via Bi‐Interfacial Topography for Pressure Perception Recognition

Emerging memory devices, that can provide programmable information recording with tunable resistive switching under external stimuli, hold great potential for applications in data storage, logic circuits, and artificial synapses. Realization of multifunctional manipulation within individual memory d...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiangjing, Zhou, Zhe, Ban, Chaoyi, Zhang, Zepu, Ju, Shang, Huang, Xiao, Mao, Huiwu, Chang, Qing, Yin, Yuhang, Song, Mengya, Cheng, Shuai, Ding, Yamei, Liu, Zhengdong, Ju, Ruolin, Xie, Linghai, Miao, Feng, Liu, Juqing, Huang, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175288/
https://www.ncbi.nlm.nih.gov/pubmed/32328417
http://dx.doi.org/10.1002/advs.201902864
_version_ 1783524802876669952
author Wang, Xiangjing
Zhou, Zhe
Ban, Chaoyi
Zhang, Zepu
Ju, Shang
Huang, Xiao
Mao, Huiwu
Chang, Qing
Yin, Yuhang
Song, Mengya
Cheng, Shuai
Ding, Yamei
Liu, Zhengdong
Ju, Ruolin
Xie, Linghai
Miao, Feng
Liu, Juqing
Huang, Wei
author_facet Wang, Xiangjing
Zhou, Zhe
Ban, Chaoyi
Zhang, Zepu
Ju, Shang
Huang, Xiao
Mao, Huiwu
Chang, Qing
Yin, Yuhang
Song, Mengya
Cheng, Shuai
Ding, Yamei
Liu, Zhengdong
Ju, Ruolin
Xie, Linghai
Miao, Feng
Liu, Juqing
Huang, Wei
author_sort Wang, Xiangjing
collection PubMed
description Emerging memory devices, that can provide programmable information recording with tunable resistive switching under external stimuli, hold great potential for applications in data storage, logic circuits, and artificial synapses. Realization of multifunctional manipulation within individual memory devices is particularly important in the More‐than‐Moore era, yet remains a challenge. Here, both rewritable and nonerasable memory are demonstrated in a single stimuli‐responsive polymer diode, based on a nanohole‐nanowrinkle bi‐interfacial structure. Such synergic nanostructure is constructed from interfacing a nanowrinkled bottom graphene electrode and top polymer matrix with nanoholes; and it can be easily prepared by spin coating, which is a low‐cost and high‐yield production method. Furthermore, the resulting device, with ternary and low‐power operation under varied external stimuli, can enable both reversible and irreversible biomimetic pressure recognition memories using a device‐to‐system framework. This work offers both a general guideline to fabricate multifunctional memory devices via interfacial nanostructure engineering and a smart information storage basis for future artificial intelligence.
format Online
Article
Text
id pubmed-7175288
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-71752882020-04-23 Multifunctional Polymer Memory via Bi‐Interfacial Topography for Pressure Perception Recognition Wang, Xiangjing Zhou, Zhe Ban, Chaoyi Zhang, Zepu Ju, Shang Huang, Xiao Mao, Huiwu Chang, Qing Yin, Yuhang Song, Mengya Cheng, Shuai Ding, Yamei Liu, Zhengdong Ju, Ruolin Xie, Linghai Miao, Feng Liu, Juqing Huang, Wei Adv Sci (Weinh) Communications Emerging memory devices, that can provide programmable information recording with tunable resistive switching under external stimuli, hold great potential for applications in data storage, logic circuits, and artificial synapses. Realization of multifunctional manipulation within individual memory devices is particularly important in the More‐than‐Moore era, yet remains a challenge. Here, both rewritable and nonerasable memory are demonstrated in a single stimuli‐responsive polymer diode, based on a nanohole‐nanowrinkle bi‐interfacial structure. Such synergic nanostructure is constructed from interfacing a nanowrinkled bottom graphene electrode and top polymer matrix with nanoholes; and it can be easily prepared by spin coating, which is a low‐cost and high‐yield production method. Furthermore, the resulting device, with ternary and low‐power operation under varied external stimuli, can enable both reversible and irreversible biomimetic pressure recognition memories using a device‐to‐system framework. This work offers both a general guideline to fabricate multifunctional memory devices via interfacial nanostructure engineering and a smart information storage basis for future artificial intelligence. John Wiley and Sons Inc. 2020-02-25 /pmc/articles/PMC7175288/ /pubmed/32328417 http://dx.doi.org/10.1002/advs.201902864 Text en © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Wang, Xiangjing
Zhou, Zhe
Ban, Chaoyi
Zhang, Zepu
Ju, Shang
Huang, Xiao
Mao, Huiwu
Chang, Qing
Yin, Yuhang
Song, Mengya
Cheng, Shuai
Ding, Yamei
Liu, Zhengdong
Ju, Ruolin
Xie, Linghai
Miao, Feng
Liu, Juqing
Huang, Wei
Multifunctional Polymer Memory via Bi‐Interfacial Topography for Pressure Perception Recognition
title Multifunctional Polymer Memory via Bi‐Interfacial Topography for Pressure Perception Recognition
title_full Multifunctional Polymer Memory via Bi‐Interfacial Topography for Pressure Perception Recognition
title_fullStr Multifunctional Polymer Memory via Bi‐Interfacial Topography for Pressure Perception Recognition
title_full_unstemmed Multifunctional Polymer Memory via Bi‐Interfacial Topography for Pressure Perception Recognition
title_short Multifunctional Polymer Memory via Bi‐Interfacial Topography for Pressure Perception Recognition
title_sort multifunctional polymer memory via bi‐interfacial topography for pressure perception recognition
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175288/
https://www.ncbi.nlm.nih.gov/pubmed/32328417
http://dx.doi.org/10.1002/advs.201902864
work_keys_str_mv AT wangxiangjing multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition
AT zhouzhe multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition
AT banchaoyi multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition
AT zhangzepu multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition
AT jushang multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition
AT huangxiao multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition
AT maohuiwu multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition
AT changqing multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition
AT yinyuhang multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition
AT songmengya multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition
AT chengshuai multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition
AT dingyamei multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition
AT liuzhengdong multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition
AT juruolin multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition
AT xielinghai multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition
AT miaofeng multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition
AT liujuqing multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition
AT huangwei multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition