Cargando…
Multifunctional Polymer Memory via Bi‐Interfacial Topography for Pressure Perception Recognition
Emerging memory devices, that can provide programmable information recording with tunable resistive switching under external stimuli, hold great potential for applications in data storage, logic circuits, and artificial synapses. Realization of multifunctional manipulation within individual memory d...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175288/ https://www.ncbi.nlm.nih.gov/pubmed/32328417 http://dx.doi.org/10.1002/advs.201902864 |
_version_ | 1783524802876669952 |
---|---|
author | Wang, Xiangjing Zhou, Zhe Ban, Chaoyi Zhang, Zepu Ju, Shang Huang, Xiao Mao, Huiwu Chang, Qing Yin, Yuhang Song, Mengya Cheng, Shuai Ding, Yamei Liu, Zhengdong Ju, Ruolin Xie, Linghai Miao, Feng Liu, Juqing Huang, Wei |
author_facet | Wang, Xiangjing Zhou, Zhe Ban, Chaoyi Zhang, Zepu Ju, Shang Huang, Xiao Mao, Huiwu Chang, Qing Yin, Yuhang Song, Mengya Cheng, Shuai Ding, Yamei Liu, Zhengdong Ju, Ruolin Xie, Linghai Miao, Feng Liu, Juqing Huang, Wei |
author_sort | Wang, Xiangjing |
collection | PubMed |
description | Emerging memory devices, that can provide programmable information recording with tunable resistive switching under external stimuli, hold great potential for applications in data storage, logic circuits, and artificial synapses. Realization of multifunctional manipulation within individual memory devices is particularly important in the More‐than‐Moore era, yet remains a challenge. Here, both rewritable and nonerasable memory are demonstrated in a single stimuli‐responsive polymer diode, based on a nanohole‐nanowrinkle bi‐interfacial structure. Such synergic nanostructure is constructed from interfacing a nanowrinkled bottom graphene electrode and top polymer matrix with nanoholes; and it can be easily prepared by spin coating, which is a low‐cost and high‐yield production method. Furthermore, the resulting device, with ternary and low‐power operation under varied external stimuli, can enable both reversible and irreversible biomimetic pressure recognition memories using a device‐to‐system framework. This work offers both a general guideline to fabricate multifunctional memory devices via interfacial nanostructure engineering and a smart information storage basis for future artificial intelligence. |
format | Online Article Text |
id | pubmed-7175288 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-71752882020-04-23 Multifunctional Polymer Memory via Bi‐Interfacial Topography for Pressure Perception Recognition Wang, Xiangjing Zhou, Zhe Ban, Chaoyi Zhang, Zepu Ju, Shang Huang, Xiao Mao, Huiwu Chang, Qing Yin, Yuhang Song, Mengya Cheng, Shuai Ding, Yamei Liu, Zhengdong Ju, Ruolin Xie, Linghai Miao, Feng Liu, Juqing Huang, Wei Adv Sci (Weinh) Communications Emerging memory devices, that can provide programmable information recording with tunable resistive switching under external stimuli, hold great potential for applications in data storage, logic circuits, and artificial synapses. Realization of multifunctional manipulation within individual memory devices is particularly important in the More‐than‐Moore era, yet remains a challenge. Here, both rewritable and nonerasable memory are demonstrated in a single stimuli‐responsive polymer diode, based on a nanohole‐nanowrinkle bi‐interfacial structure. Such synergic nanostructure is constructed from interfacing a nanowrinkled bottom graphene electrode and top polymer matrix with nanoholes; and it can be easily prepared by spin coating, which is a low‐cost and high‐yield production method. Furthermore, the resulting device, with ternary and low‐power operation under varied external stimuli, can enable both reversible and irreversible biomimetic pressure recognition memories using a device‐to‐system framework. This work offers both a general guideline to fabricate multifunctional memory devices via interfacial nanostructure engineering and a smart information storage basis for future artificial intelligence. John Wiley and Sons Inc. 2020-02-25 /pmc/articles/PMC7175288/ /pubmed/32328417 http://dx.doi.org/10.1002/advs.201902864 Text en © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Communications Wang, Xiangjing Zhou, Zhe Ban, Chaoyi Zhang, Zepu Ju, Shang Huang, Xiao Mao, Huiwu Chang, Qing Yin, Yuhang Song, Mengya Cheng, Shuai Ding, Yamei Liu, Zhengdong Ju, Ruolin Xie, Linghai Miao, Feng Liu, Juqing Huang, Wei Multifunctional Polymer Memory via Bi‐Interfacial Topography for Pressure Perception Recognition |
title | Multifunctional Polymer Memory via Bi‐Interfacial Topography for Pressure Perception Recognition |
title_full | Multifunctional Polymer Memory via Bi‐Interfacial Topography for Pressure Perception Recognition |
title_fullStr | Multifunctional Polymer Memory via Bi‐Interfacial Topography for Pressure Perception Recognition |
title_full_unstemmed | Multifunctional Polymer Memory via Bi‐Interfacial Topography for Pressure Perception Recognition |
title_short | Multifunctional Polymer Memory via Bi‐Interfacial Topography for Pressure Perception Recognition |
title_sort | multifunctional polymer memory via bi‐interfacial topography for pressure perception recognition |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175288/ https://www.ncbi.nlm.nih.gov/pubmed/32328417 http://dx.doi.org/10.1002/advs.201902864 |
work_keys_str_mv | AT wangxiangjing multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition AT zhouzhe multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition AT banchaoyi multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition AT zhangzepu multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition AT jushang multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition AT huangxiao multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition AT maohuiwu multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition AT changqing multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition AT yinyuhang multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition AT songmengya multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition AT chengshuai multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition AT dingyamei multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition AT liuzhengdong multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition AT juruolin multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition AT xielinghai multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition AT miaofeng multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition AT liujuqing multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition AT huangwei multifunctionalpolymermemoryviabiinterfacialtopographyforpressureperceptionrecognition |