Cargando…

Bilevel Parameter Learning for Higher-Order Total Variation Regularisation Models

We consider a bilevel optimisation approach for parameter learning in higher-order total variation image reconstruction models. Apart from the least squares cost functional, naturally used in bilevel learning, we propose and analyse an alternative cost based on a Huber-regularised TV seminorm. Diffe...

Descripción completa

Detalles Bibliográficos
Autores principales: De los Reyes, J. C., Schönlieb, C.-B., Valkonen, T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175605/
https://www.ncbi.nlm.nih.gov/pubmed/32355410
http://dx.doi.org/10.1007/s10851-016-0662-8
_version_ 1783524866712928256
author De los Reyes, J. C.
Schönlieb, C.-B.
Valkonen, T.
author_facet De los Reyes, J. C.
Schönlieb, C.-B.
Valkonen, T.
author_sort De los Reyes, J. C.
collection PubMed
description We consider a bilevel optimisation approach for parameter learning in higher-order total variation image reconstruction models. Apart from the least squares cost functional, naturally used in bilevel learning, we propose and analyse an alternative cost based on a Huber-regularised TV seminorm. Differentiability properties of the solution operator are verified and a first-order optimality system is derived. Based on the adjoint information, a combined quasi-Newton/semismooth Newton algorithm is proposed for the numerical solution of the bilevel problems. Numerical experiments are carried out to show the suitability of our approach and the improved performance of the new cost functional. Thanks to the bilevel optimisation framework, also a detailed comparison between [Formula: see text] and [Formula: see text] is carried out, showing the advantages and shortcomings of both regularisers, depending on the structure of the processed images and their noise level.
format Online
Article
Text
id pubmed-7175605
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-71756052020-04-28 Bilevel Parameter Learning for Higher-Order Total Variation Regularisation Models De los Reyes, J. C. Schönlieb, C.-B. Valkonen, T. J Math Imaging Vis Article We consider a bilevel optimisation approach for parameter learning in higher-order total variation image reconstruction models. Apart from the least squares cost functional, naturally used in bilevel learning, we propose and analyse an alternative cost based on a Huber-regularised TV seminorm. Differentiability properties of the solution operator are verified and a first-order optimality system is derived. Based on the adjoint information, a combined quasi-Newton/semismooth Newton algorithm is proposed for the numerical solution of the bilevel problems. Numerical experiments are carried out to show the suitability of our approach and the improved performance of the new cost functional. Thanks to the bilevel optimisation framework, also a detailed comparison between [Formula: see text] and [Formula: see text] is carried out, showing the advantages and shortcomings of both regularisers, depending on the structure of the processed images and their noise level. Springer US 2016-06-01 2017 /pmc/articles/PMC7175605/ /pubmed/32355410 http://dx.doi.org/10.1007/s10851-016-0662-8 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
De los Reyes, J. C.
Schönlieb, C.-B.
Valkonen, T.
Bilevel Parameter Learning for Higher-Order Total Variation Regularisation Models
title Bilevel Parameter Learning for Higher-Order Total Variation Regularisation Models
title_full Bilevel Parameter Learning for Higher-Order Total Variation Regularisation Models
title_fullStr Bilevel Parameter Learning for Higher-Order Total Variation Regularisation Models
title_full_unstemmed Bilevel Parameter Learning for Higher-Order Total Variation Regularisation Models
title_short Bilevel Parameter Learning for Higher-Order Total Variation Regularisation Models
title_sort bilevel parameter learning for higher-order total variation regularisation models
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175605/
https://www.ncbi.nlm.nih.gov/pubmed/32355410
http://dx.doi.org/10.1007/s10851-016-0662-8
work_keys_str_mv AT delosreyesjc bilevelparameterlearningforhigherordertotalvariationregularisationmodels
AT schonliebcb bilevelparameterlearningforhigherordertotalvariationregularisationmodels
AT valkonent bilevelparameterlearningforhigherordertotalvariationregularisationmodels