Cargando…
Bilevel Parameter Learning for Higher-Order Total Variation Regularisation Models
We consider a bilevel optimisation approach for parameter learning in higher-order total variation image reconstruction models. Apart from the least squares cost functional, naturally used in bilevel learning, we propose and analyse an alternative cost based on a Huber-regularised TV seminorm. Diffe...
Autores principales: | De los Reyes, J. C., Schönlieb, C.-B., Valkonen, T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175605/ https://www.ncbi.nlm.nih.gov/pubmed/32355410 http://dx.doi.org/10.1007/s10851-016-0662-8 |
Ejemplares similares
-
Variational regularisation for inverse problems with imperfect forward operators and general noise models
por: Bungert, Leon, et al.
Publicado: (2020) -
Parameter estimation in models of biological oscillators: an automated regularised estimation approach
por: Pitt, Jake Alan, et al.
Publicado: (2019) -
Infimal Convolution Regularisation Functionals of BV and [Formula: see text] Spaces: Part I: The Finite [Formula: see text] Case
por: Burger, Martin, et al.
Publicado: (2016) -
Wavelet Regularised Maximum Entropy
por: Maisinger, K S
Publicado: (2000) -
Metric-guided regularisation parameter selection for statistical iterative reconstruction in computed tomography
por: Allner, Sebastian, et al.
Publicado: (2019)