Cargando…
Dry Matter Losses and Methane Emissions During Wood Chip Storage: the Impact on Full Life Cycle Greenhouse Gas Savings of Short Rotation Coppice Willow for Heat
A life cycle assessment (LCA) approach was used to examine the greenhouse gas (GHG) emissions and energy balance of short rotation coppice (SRC) willow for heat production. The modelled supply chain includes cutting multiplication, site establishment, maintenance, harvesting, storage, transport and...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175657/ https://www.ncbi.nlm.nih.gov/pubmed/32355533 http://dx.doi.org/10.1007/s12155-016-9728-0 |
_version_ | 1783524875013455872 |
---|---|
author | Whittaker, Carly Macalpine, William Yates, Nicola E. Shield, Ian |
author_facet | Whittaker, Carly Macalpine, William Yates, Nicola E. Shield, Ian |
author_sort | Whittaker, Carly |
collection | PubMed |
description | A life cycle assessment (LCA) approach was used to examine the greenhouse gas (GHG) emissions and energy balance of short rotation coppice (SRC) willow for heat production. The modelled supply chain includes cutting multiplication, site establishment, maintenance, harvesting, storage, transport and combustion. The relative impacts of dry matter losses and methane emissions from chip storage were examined from a LCA perspective, comparing the GHG emissions from the SRC supply chain with those of natural gas for heat generation. The results show that SRC generally provides very high GHG emission savings of over 90 %. The LCA model estimates that a 1, 10 and 20 % loss of dry matter during storage causes a 1, 6 and 11 % increase in GHG emissions per MWh. The GHG emission results are extremely sensitive to emissions of methane from the wood chip stack: If 1 % of the carbon within the stack undergoes anaerobic decomposition to methane, then the GHG emissions per MWh are tripled. There are some uncertainties in the LCA results, regarding the true formation of methane in wood chip stacks, non-CO(2) emissions from combustion, N(2)O emissions from leaf fall and the extent of carbon sequestered under the crop, and these all contribute a large proportion of the life cycle GHG emissions from cultivation of the crop. |
format | Online Article Text |
id | pubmed-7175657 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-71756572020-04-28 Dry Matter Losses and Methane Emissions During Wood Chip Storage: the Impact on Full Life Cycle Greenhouse Gas Savings of Short Rotation Coppice Willow for Heat Whittaker, Carly Macalpine, William Yates, Nicola E. Shield, Ian Bioenergy Res Article A life cycle assessment (LCA) approach was used to examine the greenhouse gas (GHG) emissions and energy balance of short rotation coppice (SRC) willow for heat production. The modelled supply chain includes cutting multiplication, site establishment, maintenance, harvesting, storage, transport and combustion. The relative impacts of dry matter losses and methane emissions from chip storage were examined from a LCA perspective, comparing the GHG emissions from the SRC supply chain with those of natural gas for heat generation. The results show that SRC generally provides very high GHG emission savings of over 90 %. The LCA model estimates that a 1, 10 and 20 % loss of dry matter during storage causes a 1, 6 and 11 % increase in GHG emissions per MWh. The GHG emission results are extremely sensitive to emissions of methane from the wood chip stack: If 1 % of the carbon within the stack undergoes anaerobic decomposition to methane, then the GHG emissions per MWh are tripled. There are some uncertainties in the LCA results, regarding the true formation of methane in wood chip stacks, non-CO(2) emissions from combustion, N(2)O emissions from leaf fall and the extent of carbon sequestered under the crop, and these all contribute a large proportion of the life cycle GHG emissions from cultivation of the crop. Springer US 2016-04-13 2016 /pmc/articles/PMC7175657/ /pubmed/32355533 http://dx.doi.org/10.1007/s12155-016-9728-0 Text en © The Author(s) 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Whittaker, Carly Macalpine, William Yates, Nicola E. Shield, Ian Dry Matter Losses and Methane Emissions During Wood Chip Storage: the Impact on Full Life Cycle Greenhouse Gas Savings of Short Rotation Coppice Willow for Heat |
title | Dry Matter Losses and Methane Emissions During Wood Chip Storage: the Impact on Full Life Cycle Greenhouse Gas Savings of Short Rotation Coppice Willow for Heat |
title_full | Dry Matter Losses and Methane Emissions During Wood Chip Storage: the Impact on Full Life Cycle Greenhouse Gas Savings of Short Rotation Coppice Willow for Heat |
title_fullStr | Dry Matter Losses and Methane Emissions During Wood Chip Storage: the Impact on Full Life Cycle Greenhouse Gas Savings of Short Rotation Coppice Willow for Heat |
title_full_unstemmed | Dry Matter Losses and Methane Emissions During Wood Chip Storage: the Impact on Full Life Cycle Greenhouse Gas Savings of Short Rotation Coppice Willow for Heat |
title_short | Dry Matter Losses and Methane Emissions During Wood Chip Storage: the Impact on Full Life Cycle Greenhouse Gas Savings of Short Rotation Coppice Willow for Heat |
title_sort | dry matter losses and methane emissions during wood chip storage: the impact on full life cycle greenhouse gas savings of short rotation coppice willow for heat |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175657/ https://www.ncbi.nlm.nih.gov/pubmed/32355533 http://dx.doi.org/10.1007/s12155-016-9728-0 |
work_keys_str_mv | AT whittakercarly drymatterlossesandmethaneemissionsduringwoodchipstoragetheimpactonfulllifecyclegreenhousegassavingsofshortrotationcoppicewillowforheat AT macalpinewilliam drymatterlossesandmethaneemissionsduringwoodchipstoragetheimpactonfulllifecyclegreenhousegassavingsofshortrotationcoppicewillowforheat AT yatesnicolae drymatterlossesandmethaneemissionsduringwoodchipstoragetheimpactonfulllifecyclegreenhousegassavingsofshortrotationcoppicewillowforheat AT shieldian drymatterlossesandmethaneemissionsduringwoodchipstoragetheimpactonfulllifecyclegreenhousegassavingsofshortrotationcoppicewillowforheat |