Cargando…

Surface modified cellulose scaffolds for tissue engineering

We report the ability of cellulose to support cells without the use of matrix ligands on the surface of the material, thus creating a two-component system for tissue engineering of cells and materials. Sheets of bacterial cellulose, grown from a culture medium containing Acetobacter organism were ch...

Descripción completa

Detalles Bibliográficos
Autores principales: Courtenay, James C., Johns, Marcus A., Galembeck, Fernando, Deneke, Christoph, Lanzoni, Evandro M., Costa, Carlos A., Scott, Janet L., Sharma, Ram I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175690/
https://www.ncbi.nlm.nih.gov/pubmed/32355428
http://dx.doi.org/10.1007/s10570-016-1111-y
Descripción
Sumario:We report the ability of cellulose to support cells without the use of matrix ligands on the surface of the material, thus creating a two-component system for tissue engineering of cells and materials. Sheets of bacterial cellulose, grown from a culture medium containing Acetobacter organism were chemically modified with glycidyltrimethylammonium chloride or by oxidation with sodium hypochlorite in the presence of sodium bromide and 2,2,6,6-tetramethylpipiridine 1-oxyl radical to introduce a positive, or negative, charge, respectively. This modification process did not degrade the mechanical properties of the bulk material, but grafting of a positively charged moiety to the cellulose surface (cationic cellulose) increased cell attachment by 70% compared to unmodified cellulose, while negatively charged, oxidised cellulose films (anionic cellulose), showed low levels of cell attachment comparable to those seen for unmodified cellulose. Only a minimal level of cationic surface derivitisation (ca 3% degree of substitution) was required for increased cell attachment and no mediating proteins were required. Cell adhesion studies exhibited the same trends as the attachment studies, while the mean cell area and aspect ratio was highest on the cationic surfaces. Overall, we demonstrated the utility of positively charged bacterial cellulose in tissue engineering in the absence of proteins for cell attachment. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10570-016-1111-y) contains supplementary material, which is available to authorized users.