Cargando…

Straight Skeletons and Mitered Offsets of Nonconvex Polytopes

We give a concise definition of mitered offset surfaces for nonconvex polytopes in [Formula: see text] , along with a proof of existence and a discussion of basic properties. These results imply the existence of 3D straight skeletons for general nonconvex polytopes. The geometric, topological, and a...

Descripción completa

Detalles Bibliográficos
Autores principales: Aurenhammer, Franz, Walzl, Gernot
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175731/
https://www.ncbi.nlm.nih.gov/pubmed/32355389
http://dx.doi.org/10.1007/s00454-016-9811-5
_version_ 1783524889545670656
author Aurenhammer, Franz
Walzl, Gernot
author_facet Aurenhammer, Franz
Walzl, Gernot
author_sort Aurenhammer, Franz
collection PubMed
description We give a concise definition of mitered offset surfaces for nonconvex polytopes in [Formula: see text] , along with a proof of existence and a discussion of basic properties. These results imply the existence of 3D straight skeletons for general nonconvex polytopes. The geometric, topological, and algorithmic features of such skeletons are investigated, including a classification of their constructing events in the generic case. Our results extend to the weighted setting, to a larger class of polytope decompositions, and to general dimensions. For (weighted) straight skeletons of an n-facet polytope in [Formula: see text] , an upper bound of [Formula: see text] on their combinatorial complexity is derived. It relies on a novel layer partition for straight skeletons, and improves the trivial bound by an order of magnitude for [Formula: see text] .
format Online
Article
Text
id pubmed-7175731
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-71757312020-04-28 Straight Skeletons and Mitered Offsets of Nonconvex Polytopes Aurenhammer, Franz Walzl, Gernot Discrete Comput Geom Article We give a concise definition of mitered offset surfaces for nonconvex polytopes in [Formula: see text] , along with a proof of existence and a discussion of basic properties. These results imply the existence of 3D straight skeletons for general nonconvex polytopes. The geometric, topological, and algorithmic features of such skeletons are investigated, including a classification of their constructing events in the generic case. Our results extend to the weighted setting, to a larger class of polytope decompositions, and to general dimensions. For (weighted) straight skeletons of an n-facet polytope in [Formula: see text] , an upper bound of [Formula: see text] on their combinatorial complexity is derived. It relies on a novel layer partition for straight skeletons, and improves the trivial bound by an order of magnitude for [Formula: see text] . Springer US 2016-08-08 2016 /pmc/articles/PMC7175731/ /pubmed/32355389 http://dx.doi.org/10.1007/s00454-016-9811-5 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Aurenhammer, Franz
Walzl, Gernot
Straight Skeletons and Mitered Offsets of Nonconvex Polytopes
title Straight Skeletons and Mitered Offsets of Nonconvex Polytopes
title_full Straight Skeletons and Mitered Offsets of Nonconvex Polytopes
title_fullStr Straight Skeletons and Mitered Offsets of Nonconvex Polytopes
title_full_unstemmed Straight Skeletons and Mitered Offsets of Nonconvex Polytopes
title_short Straight Skeletons and Mitered Offsets of Nonconvex Polytopes
title_sort straight skeletons and mitered offsets of nonconvex polytopes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175731/
https://www.ncbi.nlm.nih.gov/pubmed/32355389
http://dx.doi.org/10.1007/s00454-016-9811-5
work_keys_str_mv AT aurenhammerfranz straightskeletonsandmiteredoffsetsofnonconvexpolytopes
AT walzlgernot straightskeletonsandmiteredoffsetsofnonconvexpolytopes