Cargando…
Propensity score adjustment using machine learning classification algorithms to control selection bias in online surveys
Modern survey methods may be subject to non-observable bias, from various sources. Among online surveys, for example, selection bias is prevalent, due to the sampling mechanism commonly used, whereby participants self-select from a subgroup whose characteristics differ from those of the target popul...
Autores principales: | Ferri-García, Ramón, Rueda, María del Mar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7176094/ https://www.ncbi.nlm.nih.gov/pubmed/32320429 http://dx.doi.org/10.1371/journal.pone.0231500 |
Ejemplares similares
-
Double propensity-score adjustment: A solution to design bias or bias due to incomplete matching
por: Austin, Peter C
Publicado: (2016) -
An evaluation of whether propensity score adjustment can remove the self-selection bias inherent to web panel surveys addressing sensitive health behaviours
por: Copas, Andrew, et al.
Publicado: (2020) -
Enhancing estimation methods for integrating probability and nonprobability survey samples with machine‐learning techniques. An application to a Survey on the impact of the COVID‐19 pandemic in Spain
por: Rueda, María del Mar, et al.
Publicado: (2022) -
The Wikipedia Gender Gap Revisited: Characterizing Survey Response Bias with Propensity Score Estimation
por: Hill, Benjamin Mako, et al.
Publicado: (2013) -
Effects of Adjusting for Instrumental Variables on the Bias and Precision of Propensity Score Weighted Estimators: Analysis Under Complete, Near, and No Positivity Violations
por: Choi, Byeong Yeob, et al.
Publicado: (2023)