Cargando…
eXplainable Artificial Intelligence (XAI) for the identification of biologically relevant gene expression patterns in longitudinal human studies, insights from obesity research
Until date, several machine learning approaches have been proposed for the dynamic modeling of temporal omics data. Although they have yielded impressive results in terms of model accuracy and predictive ability, most of these applications are based on “Black-box” algorithms and more interpretable m...
Autores principales: | Anguita-Ruiz, Augusto, Segura-Delgado, Alberto, Alcalá, Rafael, Aguilera, Concepción M., Alcalá-Fdez, Jesús |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7176286/ https://www.ncbi.nlm.nih.gov/pubmed/32275707 http://dx.doi.org/10.1371/journal.pcbi.1007792 |
Ejemplares similares
-
Taming the chaos?! Using eXplainable Artificial Intelligence (XAI) to tackle the complexity in mental health research
por: Roessner, Veit, et al.
Publicado: (2021) -
An eXplainability Artificial Intelligence approach to brain connectivity in Alzheimer's disease
por: Amoroso, Nicola, et al.
Publicado: (2023) -
Detecting the socio-economic drivers of confidence in government with eXplainable Artificial Intelligence
por: Bellantuono, Loredana, et al.
Publicado: (2023) -
An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis
por: Bellantuono, Loredana, et al.
Publicado: (2023) -
Editorial: Explainable Artificial Intelligence (XAI) in Systems Neuroscience
por: Lombardi, Angela, et al.
Publicado: (2021)