Cargando…

Absolute Electrical Impedance Tomography (aEIT) Guided Ventilation Therapy in Critical Care Patients: Simulations and Future Trends

Thoracic electrical impedance tomography (EIT) is a noninvasive, radiation-free monitoring technique whose aim is to reconstruct a cross-sectional image of the internal spatial distribution of conductivity from electrical measurements made by injecting small alternating currents via an electrode arr...

Descripción completa

Detalles Bibliográficos
Autores principales: Denaï, Mouloud A., Mahfouf, Mahdi, Mohamad-Samuri, Suzani, Panoutsos, George, Brown, Brian H., Mills, Gary H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IEEE 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7176469/
https://www.ncbi.nlm.nih.gov/pubmed/19906599
http://dx.doi.org/10.1109/TITB.2009.2036010
_version_ 1783525025473626112
author Denaï, Mouloud A.
Mahfouf, Mahdi
Mohamad-Samuri, Suzani
Panoutsos, George
Brown, Brian H.
Mills, Gary H.
author_facet Denaï, Mouloud A.
Mahfouf, Mahdi
Mohamad-Samuri, Suzani
Panoutsos, George
Brown, Brian H.
Mills, Gary H.
author_sort Denaï, Mouloud A.
collection PubMed
description Thoracic electrical impedance tomography (EIT) is a noninvasive, radiation-free monitoring technique whose aim is to reconstruct a cross-sectional image of the internal spatial distribution of conductivity from electrical measurements made by injecting small alternating currents via an electrode array placed on the surface of the thorax. The purpose of this paper is to discuss the fundamentals of EIT and demonstrate the principles of mechanical ventilation, lung recruitment, and EIT imaging on a comprehensive physiological model, which combines a model of respiratory mechanics, a model of the human lung absolute resistivity as a function of air content, and a 2-D finite-element mesh of the thorax to simulate EIT image reconstruction during mechanical ventilation. The overall model gives a good understanding of respiratory physiology and EIT monitoring techniques in mechanically ventilated patients. The model proposed here was able to reproduce consistent images of ventilation distribution in simulated acutely injured and collapsed lung conditions. A new advisory system architecture integrating a previously developed data-driven physiological model for continuous and noninvasive predictions of blood gas parameters with the regional lung function data/information generated from absolute EIT (aEIT) is proposed for monitoring and ventilator therapy management of critical care patients.
format Online
Article
Text
id pubmed-7176469
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher IEEE
record_format MEDLINE/PubMed
spelling pubmed-71764692020-05-07 Absolute Electrical Impedance Tomography (aEIT) Guided Ventilation Therapy in Critical Care Patients: Simulations and Future Trends Denaï, Mouloud A. Mahfouf, Mahdi Mohamad-Samuri, Suzani Panoutsos, George Brown, Brian H. Mills, Gary H. IEEE Trans Inf Technol Biomed Regular Papers Thoracic electrical impedance tomography (EIT) is a noninvasive, radiation-free monitoring technique whose aim is to reconstruct a cross-sectional image of the internal spatial distribution of conductivity from electrical measurements made by injecting small alternating currents via an electrode array placed on the surface of the thorax. The purpose of this paper is to discuss the fundamentals of EIT and demonstrate the principles of mechanical ventilation, lung recruitment, and EIT imaging on a comprehensive physiological model, which combines a model of respiratory mechanics, a model of the human lung absolute resistivity as a function of air content, and a 2-D finite-element mesh of the thorax to simulate EIT image reconstruction during mechanical ventilation. The overall model gives a good understanding of respiratory physiology and EIT monitoring techniques in mechanically ventilated patients. The model proposed here was able to reproduce consistent images of ventilation distribution in simulated acutely injured and collapsed lung conditions. A new advisory system architecture integrating a previously developed data-driven physiological model for continuous and noninvasive predictions of blood gas parameters with the regional lung function data/information generated from absolute EIT (aEIT) is proposed for monitoring and ventilator therapy management of critical care patients. IEEE 2009-11-10 /pmc/articles/PMC7176469/ /pubmed/19906599 http://dx.doi.org/10.1109/TITB.2009.2036010 Text en https://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
spellingShingle Regular Papers
Denaï, Mouloud A.
Mahfouf, Mahdi
Mohamad-Samuri, Suzani
Panoutsos, George
Brown, Brian H.
Mills, Gary H.
Absolute Electrical Impedance Tomography (aEIT) Guided Ventilation Therapy in Critical Care Patients: Simulations and Future Trends
title Absolute Electrical Impedance Tomography (aEIT) Guided Ventilation Therapy in Critical Care Patients: Simulations and Future Trends
title_full Absolute Electrical Impedance Tomography (aEIT) Guided Ventilation Therapy in Critical Care Patients: Simulations and Future Trends
title_fullStr Absolute Electrical Impedance Tomography (aEIT) Guided Ventilation Therapy in Critical Care Patients: Simulations and Future Trends
title_full_unstemmed Absolute Electrical Impedance Tomography (aEIT) Guided Ventilation Therapy in Critical Care Patients: Simulations and Future Trends
title_short Absolute Electrical Impedance Tomography (aEIT) Guided Ventilation Therapy in Critical Care Patients: Simulations and Future Trends
title_sort absolute electrical impedance tomography (aeit) guided ventilation therapy in critical care patients: simulations and future trends
topic Regular Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7176469/
https://www.ncbi.nlm.nih.gov/pubmed/19906599
http://dx.doi.org/10.1109/TITB.2009.2036010
work_keys_str_mv AT denaimoulouda absoluteelectricalimpedancetomographyaeitguidedventilationtherapyincriticalcarepatientssimulationsandfuturetrends
AT mahfoufmahdi absoluteelectricalimpedancetomographyaeitguidedventilationtherapyincriticalcarepatientssimulationsandfuturetrends
AT mohamadsamurisuzani absoluteelectricalimpedancetomographyaeitguidedventilationtherapyincriticalcarepatientssimulationsandfuturetrends
AT panoutsosgeorge absoluteelectricalimpedancetomographyaeitguidedventilationtherapyincriticalcarepatientssimulationsandfuturetrends
AT brownbrianh absoluteelectricalimpedancetomographyaeitguidedventilationtherapyincriticalcarepatientssimulationsandfuturetrends
AT millsgaryh absoluteelectricalimpedancetomographyaeitguidedventilationtherapyincriticalcarepatientssimulationsandfuturetrends