Cargando…
Ultra-Miniature Circularly Polarized CPW-Fed Implantable Antenna Design and its Validation for Biotelemetry Applications
The paper presents a coplanar waveguide (CPW)-fed ultra-miniaturized patch antenna operating in Industrial, Scientific and Medical (ISM) band (2.4–2.5 GHz) for biotelemetry applications. The proposed antenna structure is circular in shape and its ground plane is loaded with a pair of slots for obtai...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7176686/ https://www.ncbi.nlm.nih.gov/pubmed/32321962 http://dx.doi.org/10.1038/s41598-020-63780-4 |
Sumario: | The paper presents a coplanar waveguide (CPW)-fed ultra-miniaturized patch antenna operating in Industrial, Scientific and Medical (ISM) band (2.4–2.5 GHz) for biotelemetry applications. The proposed antenna structure is circular in shape and its ground plane is loaded with a pair of slots for obtaining circular polarization. In the proposed design, asymmetric square slots generate phase condition for right-hand circularly polarized (RHCP) radiation. And, by merely changing the position of the slots, either RHCP or left-hand circularly polarized (LHCP) radiation can be excited. In the proposed design, a meandered central strip is used for miniaturization. The simulations of the proposed antenna are carried out using Ansys HFSS software with a single-layer and multilayer human tissue models. The antenna shows good performance for different tissue properties owing to its wide axial ratio bandwidth and impedance bandwidth. The antenna is fabricated and measurements are carried out in skin mimicking phantom and pork. Simulated and measured performances of the antenna are in close agreement. The power link budget is also calculated using an exterior circularly polarized (CP) receiving antenna. |
---|