Cargando…
Impact of temperature on the dynamics of the COVID-19 outbreak in China
A COVID-19 outbreak emerged in Wuhan, China at the end of 2019 and developed into a global pandemic during March 2020. The effects of temperature on the dynamics of the COVID-19 epidemic in China are unknown. Data on COVID-19 daily confirmed cases and daily mean temperatures were collected from 31 p...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177086/ https://www.ncbi.nlm.nih.gov/pubmed/32339844 http://dx.doi.org/10.1016/j.scitotenv.2020.138890 |
Sumario: | A COVID-19 outbreak emerged in Wuhan, China at the end of 2019 and developed into a global pandemic during March 2020. The effects of temperature on the dynamics of the COVID-19 epidemic in China are unknown. Data on COVID-19 daily confirmed cases and daily mean temperatures were collected from 31 provincial-level regions in mainland China between Jan. 20 and Feb. 29, 2020. Locally weighted regression and smoothing scatterplot (LOESS), distributed lag nonlinear models (DLNMs), and random-effects meta-analysis were used to examine the relationship between daily confirmed cases rate of COVID-19 and temperature conditions. The daily number of new cases peaked on Feb. 12, and then decreased. The daily confirmed cases rate of COVID-19 had a biphasic relationship with temperature (with a peak at 10 °C), and the daily incidence of COVID-19 decreased at values below and above these values. The overall epidemic intensity of COVID-19 reduced slightly following days with higher temperatures with a relative risk (RR) was 0.96 (95% CI: 0.93, 0.99). A random-effect meta-analysis including 28 provinces in mainland China, we confirmed the statistically significant association between temperature and RR during the study period (Coefficient = −0.0100, 95% CI: −0.0125, −0.0074). The DLNMs in Hubei Province (outside of Wuhan) and Wuhan showed similar patterns of temperature. Additionally, a modified susceptible-exposed-infectious-recovered (M-SEIR) model, with adjustment for climatic factors, was used to provide a complete characterization of the impact of climate on the dynamics of the COVID-19 epidemic. |
---|