Cargando…

VSeq-Toolkit: Comprehensive Computational Analysis of Viral Vectors in Gene Therapy

Viral vector characterization and analysis are important components for the development of safe gene therapeutic products, elucidating the potential genotoxic and immunogenic effects of vectors and establishing their safety profiles. Here, we present VSeq-Toolkit, which offers varying analysis modes...

Descripción completa

Detalles Bibliográficos
Autores principales: Afzal, Saira, Fronza, Raffaele, Schmidt, Manfred
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177155/
https://www.ncbi.nlm.nih.gov/pubmed/32346552
http://dx.doi.org/10.1016/j.omtm.2020.03.024
Descripción
Sumario:Viral vector characterization and analysis are important components for the development of safe gene therapeutic products, elucidating the potential genotoxic and immunogenic effects of vectors and establishing their safety profiles. Here, we present VSeq-Toolkit, which offers varying analysis modes for viral gene therapy data. The first mode determines the undesirable known contaminants and their frequency in viral preparations or other sequencing data. The second mode is designed for the analysis of intra-vector fusion breakpoints and the third mode for unraveling the viral-host fusion events distribution. Analysis modes of our toolkit can be executed independently or together and allow the analysis of multiple viral vectors concurrently. It has been designed and evaluated for the analysis of short read high-throughput sequencing data, including whole-genome or targeted sequencing. VSeq-Toolkit is developed in Perl and Bash programming languages and is available at https://github.com/CompMeth/VSeq-Toolkit.