Cargando…

The contribution of FEV(1) and airflow limitation on the intensity of dyspnea and leg effort during exercise. Insights from a real‐world cohort

RATIONALE: The effort required to cycle and breathe intensify as power increases during incremental exercise. It is currently unclear how changes in FEV(1) in the presence or absence of airflow limitation) impacts the intensity of dyspnea and leg effort. This is clinically important as the improveme...

Descripción completa

Detalles Bibliográficos
Autores principales: Satia, Imran, Farooqi, Mohammad Abdul Malik, Cusack, Ruth, Matsuoka, Masanobu, Yanqing, Xie, Kurmi, Om, O’Byrne, Paul M., Killian, Kieran J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177171/
https://www.ncbi.nlm.nih.gov/pubmed/32323482
http://dx.doi.org/10.14814/phy2.14415
Descripción
Sumario:RATIONALE: The effort required to cycle and breathe intensify as power increases during incremental exercise. It is currently unclear how changes in FEV(1) in the presence or absence of airflow limitation) impacts the intensity of dyspnea and leg effort. This is clinically important as the improvement in FEV(1) is often the target for improving dyspnea. OBJECTIVES: To investigate the relationship between dyspnea (D), leg effort, power (P), and FEV(1) with and without airflow limitation using direct psychophysical scaling performed during incremental exercise testing to symptom limited capacity. METHODS: Retrospective analysis of consecutive patients over the age of 35 referred for cardio‐pulmonary exercise testing at McMaster University Medical Centre from 1988–2012.The modified Borg scale was used to measure dyspnea throughout incremental exercise testing. MEASUREMENTS AND RESULTS: 38,788 patients were included in the analysis [Mean Age 58.6 years (SD ±11.8), Males 61%, BMI 28.1 kg/m(2) (SD ±5.1), FEV(1) was 2.7 L (SD ±0.85), 95% predicted (SD ±20.4), FVC 3.4 L (SD ± 1.0), 94% predicted (SD ±17.0)], and 10.9% had airflow limitation (AL, FEV(1)/FVC < 70%). In a nonlinear regression analysis, the intensity of dyspnea increased in a positively accelerating manner with power and as the FEV(1)% predicted decreased: Dyspnea = 0.06 * Power(1.03) * FEV(1)%Pred(−0.66)(r = .63). The intensity of leg effort increased with power and declining quadricep strength and FEV1% predicted: Leg Effort = 0.06 * Power(1.22 )* Quad(−0.56)*FEV(1)%Pred(−0.39)(r = .73). There was no independent effect of AL on dyspnea of leg effort. CONCLUSION: Power, quadriceps strength and FEV1 are the dominant factors contributing to dyspnea and leg effort, irrespective of the degree of airflow limitation.