Cargando…
Correction: Shoombuatong, W., et al. iQSP: A Sequence-Based Tool for the Prediction and Analysis of Quorum Sensing Peptides via Chou’s 5-Steps Rule and Informative Physicochemical Properties. Int. J. Mol. Sci. 2020, 21, 75
Autores principales: | Charoenkwan, Phasit, Schaduangrat, Nalini, Nantasenamat, Chanin, Piacham, Theeraphon, Shoombuatong, Watshara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177272/ https://www.ncbi.nlm.nih.gov/pubmed/32290041 http://dx.doi.org/10.3390/ijms21072629 |
Ejemplares similares
-
iQSP: A Sequence-Based Tool for the Prediction and Analysis of Quorum Sensing Peptides via Chou’s 5-Steps Rule and Informative Physicochemical Properties
por: Charoenkwan, Phasit, et al.
Publicado: (2019) -
StackTTCA: a stacking ensemble learning-based framework for accurate and high-throughput identification of tumor T cell antigens
por: Charoenkwan, Phasit, et al.
Publicado: (2023) -
Towards understanding aromatase inhibitory activity via QSAR modeling
por: Shoombuatong, Watshara, et al.
Publicado: (2018) -
Unraveling the bioactivity of anticancer peptides as deduced from machine learning
por: Shoombuatong, Watshara, et al.
Publicado: (2018) -
DeepAR: a novel deep learning-based hybrid framework for the interpretable prediction of androgen receptor antagonists
por: Schaduangrat, Nalini, et al.
Publicado: (2023)