Cargando…

Environmental Distribution of AR Class 1 Integrons in Upper Adige River Catchment (Northern Italy)

The source of antibiotic residuals can be directly related to the presence of municipal or industrial wastewater and agricultural activities. Antibiotics can trigger the dissemination of antibiotic resistance genes within bacterial communities. The mobile genetic elements Class 1 integrons (intl1 re...

Descripción completa

Detalles Bibliográficos
Autores principales: Piergiacomo, Federica, Borruso, Luigimaria, Ciccazzo, Sonia, Rizzi, Stefano, Zerbe, Stefan, Brusetti, Lorenzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177501/
https://www.ncbi.nlm.nih.gov/pubmed/32235649
http://dx.doi.org/10.3390/ijerph17072336
Descripción
Sumario:The source of antibiotic residuals can be directly related to the presence of municipal or industrial wastewater and agricultural activities. Antibiotics can trigger the dissemination of antibiotic resistance genes within bacterial communities. The mobile genetic elements Class 1 integrons (intl1 region) has been already found to be correlated with a wide range of pollutants (i.e., antibiotics, heavy metals), and hence, it has been proposed as a proxy for environmental health. This study aimed to assess the presence of intl1 in different environmental matrices, including agricultural and forest soils, freshwater and unpolluted sediments in the upper Adige River catchment (N Italy), in order to identify the spread of pollutants. Intl1 was detected by direct PCR amplification at different frequencies. The urban and agricultural areas revealed the presence of intl1, except for apple orchards, where it was below the detection limit. Interestingly, intl1 was found in a presumed unpolluted environment (glacier moraine), maybe because of the high concentration of metal ions in the mineral soil. Finally, intl1 was absent in forest fresh-leaf litter samples and occurred with low rates in soil. Our results provide new data in supporting the use of intl1 to detect the environmental health of different land-use systems.