Cargando…
Detection of Flaws in Concrete Using Ultrasonic Tomography and Convolutional Neural Networks
Non-destructive testing of concrete for defects detection, using acoustic techniques, is currently performed mainly by human inspection of recorded images. The images consist of the inside of the examined elements obtained from testing devices such as the ultrasonic tomograph. However, such an autom...
Autores principales: | Słoński, Marek, Schabowicz, Krzysztof, Krawczyk, Ewa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177575/ https://www.ncbi.nlm.nih.gov/pubmed/32230967 http://dx.doi.org/10.3390/ma13071557 |
Ejemplares similares
-
2D Digital Image Correlation and Region-Based Convolutional Neural Network in Monitoring and Evaluation of Surface Cracks in Concrete Structural Elements
por: Słoński, Marek, et al.
Publicado: (2020) -
A Wavelet Packet Transform and Convolutional Neural Network Method Based Ultrasonic Detection Signals Recognition of Concrete
por: Zhao, Jinhui, et al.
Publicado: (2022) -
Ultrasonic tomography imaging enhancement approach based on deep convolutional neural networks
por: Malikov, Azamatjon Kakhramon ugli, et al.
Publicado: (2023) -
Convolutional Autoencoder-Based Flaw Detection for Steel Wire Ropes
por: Zhang, Guoyong, et al.
Publicado: (2020) -
Learning to Detect Cracks on Damaged Concrete Surfaces Using Two-Branched Convolutional Neural Network
por: Lee, Jieun, et al.
Publicado: (2019)