Cargando…

Development of a Novel, Genome Subtraction-Derived, SARS-CoV-2-Specific COVID-19-nsp2 Real-Time RT-PCR Assay and Its Evaluation Using Clinical Specimens

The pandemic novel coronavirus infection, Coronavirus Disease 2019 (COVID-19), has affected at least 190 countries or territories, with 465,915 confirmed cases and 21,031 deaths. In a containment-based strategy, rapid, sensitive and specific testing is important in epidemiological control and clinic...

Descripción completa

Detalles Bibliográficos
Autores principales: Yip, Cyril Chik-Yan, Ho, Chi-Chun, Chan, Jasper Fuk-Woo, To, Kelvin Kai-Wang, Chan, Helen Shuk-Ying, Wong, Sally Cheuk-Ying, Leung, Kit-Hang, Fung, Agnes Yim-Fong, Ng, Anthony Chin-Ki, Zou, Zijiao, Tam, Anthony Raymond, Chung, Tom Wai-Hin, Chan, Kwok-Hung, Hung, Ivan Fan-Ngai, Cheng, Vincent Chi-Chung, Tsang, Owen Tak-Yin, Tsui, Stephen Kwok Wing, Yuen, Kwok-Yung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177594/
https://www.ncbi.nlm.nih.gov/pubmed/32276333
http://dx.doi.org/10.3390/ijms21072574
Descripción
Sumario:The pandemic novel coronavirus infection, Coronavirus Disease 2019 (COVID-19), has affected at least 190 countries or territories, with 465,915 confirmed cases and 21,031 deaths. In a containment-based strategy, rapid, sensitive and specific testing is important in epidemiological control and clinical management. Using 96 SARS-CoV-2 and 104 non-SARS-CoV-2 coronavirus genomes and our in-house program, GolayMetaMiner, four specific regions longer than 50 nucleotides in the SARS-CoV-2 genome were identified. Primers were designed to target the longest and previously untargeted nsp2 region and optimized as a probe-free real-time reverse transcription-polymerase chain reaction (RT-PCR) assay. The new COVID-19-nsp2 assay had a limit of detection (LOD) of 1.8 TCID(50)/mL and did not amplify other human-pathogenic coronaviruses and respiratory viruses. Assay reproducibility in terms of cycle threshold (Cp) values was satisfactory, with the total imprecision (% CV) values well below 5%. Evaluation of the new assay using 59 clinical specimens from 14 confirmed cases showed 100% concordance with our previously developed COVID-19-RdRp/Hel reference assay. A rapid, sensitive, SARS-CoV-2-specific real-time RT-PCR assay, COVID-19-nsp2, was developed.