Cargando…
A Surrogate Model Based on Artificial Neural Network for RF Radiation Modelling with High-Dimensional Data
This paper focuses on quantifying the uncertainty in the specific absorption rate values of the brain induced by the uncertain positions of the electroencephalography electrodes placed on the patient’s scalp. To avoid running a large number of simulations, an artificial neural network architecture f...
Autores principales: | Cheng, Xi, Henry, Clément, Andriulli, Francesco P., Person, Christian, Wiart, Joe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177606/ https://www.ncbi.nlm.nih.gov/pubmed/32283848 http://dx.doi.org/10.3390/ijerph17072586 |
Ejemplares similares
-
Sensor-Aided EMF Exposure Assessments in an Urban Environment Using Artificial Neural Networks
por: Wang, Shanshan, et al.
Publicado: (2020) -
Surrogate Modeling of the CLIC Final-Focus System using Artificial Neural Networks
por: Ögren, J., et al.
Publicado: (2020) -
Hydrological Process Surrogate Modelling and Simulation with Neural Networks
por: Zhang, Ruixi, et al.
Publicado: (2020) -
Statistical Characterization and Modeling of Indoor RF-EMF Down-Link Exposure
por: Mulugeta, Biruk Ashenafi, et al.
Publicado: (2023) -
Artificial Neural Network-Based Uplink Power Prediction From Multi-Floor Indoor Measurement Campaigns in 4G Networks
por: Mazloum, Taghrid, et al.
Publicado: (2021)