Cargando…
Improve Aggressive Driver Recognition Using Collision Surrogate Measurement and Imbalanced Class Boosting
Real-time recognition of risky driving behavior and aggressive drivers is a promising research domain, thanks to powerful machine learning algorithms and the big data provided by in-vehicle and roadside sensors. However, since the occurrence of aggressive drivers in real traffic is infrequent, most...
Autores principales: | Wang, Ke, Xue, Qingwen, Xing, Yingying, Li, Chongyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177658/ https://www.ncbi.nlm.nih.gov/pubmed/32244469 http://dx.doi.org/10.3390/ijerph17072375 |
Ejemplares similares
-
Risky Driver Recognition with Class Imbalance Data and Automated Machine Learning Framework
por: Wang, Ke, et al.
Publicado: (2021) -
Class-Aware Fish Species Recognition Using Deep Learning for an Imbalanced Dataset
por: Alaba, Simegnew Yihunie, et al.
Publicado: (2022) -
Improved PSO_AdaBoost Ensemble Algorithm for Imbalanced Data
por: Li, Kewen, et al.
Publicado: (2019) -
Boosting-GNN: Boosting Algorithm for Graph Networks on Imbalanced Node Classification
por: Shi, Shuhao, et al.
Publicado: (2021) -
Class prediction for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2010)