Cargando…
Targeting PKCθ Promotes Satellite Cell Self-Renewal
Skeletal muscle regeneration following injury depends on the ability of satellite cells (SCs) to proliferate, self-renew, and eventually differentiate. The factors that regulate the process of self-renewal are poorly understood. In this study we examined the role of PKCθ in SC self-renewal and diffe...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177808/ https://www.ncbi.nlm.nih.gov/pubmed/32244482 http://dx.doi.org/10.3390/ijms21072419 |
_version_ | 1783525302960390144 |
---|---|
author | Benedetti, Anna Fiore, Piera Filomena Madaro, Luca Lozanoska-Ochser, Biliana Bouché, Marina |
author_facet | Benedetti, Anna Fiore, Piera Filomena Madaro, Luca Lozanoska-Ochser, Biliana Bouché, Marina |
author_sort | Benedetti, Anna |
collection | PubMed |
description | Skeletal muscle regeneration following injury depends on the ability of satellite cells (SCs) to proliferate, self-renew, and eventually differentiate. The factors that regulate the process of self-renewal are poorly understood. In this study we examined the role of PKCθ in SC self-renewal and differentiation. We show that PKCθ is expressed in SCs, and its active form is localized to the chromosomes, centrosomes, and midbody during mitosis. Lack of PKCθ promotes SC symmetric self-renewal division by regulating Pard3 polarity protein localization, without affecting the overall proliferation rate. Genetic ablation of PKCθ or its pharmacological inhibition in vivo did not affect SC number in healthy muscle. By contrast, after induction of muscle injury, lack or inhibition of PKCθ resulted in a significant expansion of the quiescent SC pool. Finally, we show that lack of PKCθ does not alter the inflammatory milieu after acute injury in muscle, suggesting that the enhanced self-renewal ability of SCs in PKCθ-/- mice is not due to an alteration in the inflammatory milieu. Together, these results suggest that PKCθ plays an important role in SC self-renewal by stimulating their expansion through symmetric division, and it may represent a promising target to manipulate satellite cell self-renewal in pathological conditions. |
format | Online Article Text |
id | pubmed-7177808 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71778082020-04-28 Targeting PKCθ Promotes Satellite Cell Self-Renewal Benedetti, Anna Fiore, Piera Filomena Madaro, Luca Lozanoska-Ochser, Biliana Bouché, Marina Int J Mol Sci Article Skeletal muscle regeneration following injury depends on the ability of satellite cells (SCs) to proliferate, self-renew, and eventually differentiate. The factors that regulate the process of self-renewal are poorly understood. In this study we examined the role of PKCθ in SC self-renewal and differentiation. We show that PKCθ is expressed in SCs, and its active form is localized to the chromosomes, centrosomes, and midbody during mitosis. Lack of PKCθ promotes SC symmetric self-renewal division by regulating Pard3 polarity protein localization, without affecting the overall proliferation rate. Genetic ablation of PKCθ or its pharmacological inhibition in vivo did not affect SC number in healthy muscle. By contrast, after induction of muscle injury, lack or inhibition of PKCθ resulted in a significant expansion of the quiescent SC pool. Finally, we show that lack of PKCθ does not alter the inflammatory milieu after acute injury in muscle, suggesting that the enhanced self-renewal ability of SCs in PKCθ-/- mice is not due to an alteration in the inflammatory milieu. Together, these results suggest that PKCθ plays an important role in SC self-renewal by stimulating their expansion through symmetric division, and it may represent a promising target to manipulate satellite cell self-renewal in pathological conditions. MDPI 2020-03-31 /pmc/articles/PMC7177808/ /pubmed/32244482 http://dx.doi.org/10.3390/ijms21072419 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Benedetti, Anna Fiore, Piera Filomena Madaro, Luca Lozanoska-Ochser, Biliana Bouché, Marina Targeting PKCθ Promotes Satellite Cell Self-Renewal |
title | Targeting PKCθ Promotes Satellite Cell Self-Renewal |
title_full | Targeting PKCθ Promotes Satellite Cell Self-Renewal |
title_fullStr | Targeting PKCθ Promotes Satellite Cell Self-Renewal |
title_full_unstemmed | Targeting PKCθ Promotes Satellite Cell Self-Renewal |
title_short | Targeting PKCθ Promotes Satellite Cell Self-Renewal |
title_sort | targeting pkcθ promotes satellite cell self-renewal |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177808/ https://www.ncbi.nlm.nih.gov/pubmed/32244482 http://dx.doi.org/10.3390/ijms21072419 |
work_keys_str_mv | AT benedettianna targetingpkcthpromotessatellitecellselfrenewal AT fiorepierafilomena targetingpkcthpromotessatellitecellselfrenewal AT madaroluca targetingpkcthpromotessatellitecellselfrenewal AT lozanoskaochserbiliana targetingpkcthpromotessatellitecellselfrenewal AT bouchemarina targetingpkcthpromotessatellitecellselfrenewal |