Cargando…
The Number and Position of Orai3 Units within Heteromeric Store-Operated Ca(2+) Channels Alter the Pharmacology of I(CRAC)
Store-operated heteromeric Orai1/Orai3 channels have been discussed in the context of aging, cancer, and immune cell differentiation. In contrast to homomeric Orai1 channels, they exhibit a different pharmacology upon application of reactive oxygen species (ROS) or 2-aminoethoxydiphenyl borate (2-AP...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178029/ https://www.ncbi.nlm.nih.gov/pubmed/32252254 http://dx.doi.org/10.3390/ijms21072458 |
_version_ | 1783525360797745152 |
---|---|
author | Kappel, Sven Kilch, Tatiana Baur, Roland Lochner, Martin Peinelt, Christine |
author_facet | Kappel, Sven Kilch, Tatiana Baur, Roland Lochner, Martin Peinelt, Christine |
author_sort | Kappel, Sven |
collection | PubMed |
description | Store-operated heteromeric Orai1/Orai3 channels have been discussed in the context of aging, cancer, and immune cell differentiation. In contrast to homomeric Orai1 channels, they exhibit a different pharmacology upon application of reactive oxygen species (ROS) or 2-aminoethoxydiphenyl borate (2-APB) in various cell types. In endogenous cells, subunit composition and arrangement may vary and cannot be defined precisely. In this study, we used patch-clamp electrophysiology to investigate the 2-APB profile of store-operated and store-independent homomeric Orai1 and heteromeric Orai1/Orai3 concatenated channels with defined subunit compositions. As has been shown previous, one or more Orai3 subunit(s) within the channel result(s) in decreased Ca(2+) release activated Ca(2+) current (I(CRAC)). Upon application of 50 µM 2-APB, channels with two or more Orai3 subunits exhibit large outward currents and can be activated by 2-APB independent from storedepletion and/or the presence of STIM1. The number and position of Orai3 subunits within the heteromeric store-operated channel change ion conductivity of 2-APB-activated outward current. Compared to homomeric Orai1 channels, one Orai3 subunit within the channel does not alter 2-APB pharmacology. None of the concatenated channel constructs were able to exactly simulate the complex 2-APB pharmacology observed in prostate cancer cells. However, 2-APB profiles of prostate cancer cells are similar to those of concatenated channels with Orai3 subunit(s). Considering the presented and previous results, this indicates that distinct subtypes of heteromeric SOCE channels may be selectively activated or blocked. In the future, targeting distinct heteromeric SOCE channel subtypes may be the key to tailored SOCE-based therapies. |
format | Online Article Text |
id | pubmed-7178029 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71780292020-04-28 The Number and Position of Orai3 Units within Heteromeric Store-Operated Ca(2+) Channels Alter the Pharmacology of I(CRAC) Kappel, Sven Kilch, Tatiana Baur, Roland Lochner, Martin Peinelt, Christine Int J Mol Sci Article Store-operated heteromeric Orai1/Orai3 channels have been discussed in the context of aging, cancer, and immune cell differentiation. In contrast to homomeric Orai1 channels, they exhibit a different pharmacology upon application of reactive oxygen species (ROS) or 2-aminoethoxydiphenyl borate (2-APB) in various cell types. In endogenous cells, subunit composition and arrangement may vary and cannot be defined precisely. In this study, we used patch-clamp electrophysiology to investigate the 2-APB profile of store-operated and store-independent homomeric Orai1 and heteromeric Orai1/Orai3 concatenated channels with defined subunit compositions. As has been shown previous, one or more Orai3 subunit(s) within the channel result(s) in decreased Ca(2+) release activated Ca(2+) current (I(CRAC)). Upon application of 50 µM 2-APB, channels with two or more Orai3 subunits exhibit large outward currents and can be activated by 2-APB independent from storedepletion and/or the presence of STIM1. The number and position of Orai3 subunits within the heteromeric store-operated channel change ion conductivity of 2-APB-activated outward current. Compared to homomeric Orai1 channels, one Orai3 subunit within the channel does not alter 2-APB pharmacology. None of the concatenated channel constructs were able to exactly simulate the complex 2-APB pharmacology observed in prostate cancer cells. However, 2-APB profiles of prostate cancer cells are similar to those of concatenated channels with Orai3 subunit(s). Considering the presented and previous results, this indicates that distinct subtypes of heteromeric SOCE channels may be selectively activated or blocked. In the future, targeting distinct heteromeric SOCE channel subtypes may be the key to tailored SOCE-based therapies. MDPI 2020-04-02 /pmc/articles/PMC7178029/ /pubmed/32252254 http://dx.doi.org/10.3390/ijms21072458 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kappel, Sven Kilch, Tatiana Baur, Roland Lochner, Martin Peinelt, Christine The Number and Position of Orai3 Units within Heteromeric Store-Operated Ca(2+) Channels Alter the Pharmacology of I(CRAC) |
title | The Number and Position of Orai3 Units within Heteromeric Store-Operated Ca(2+) Channels Alter the Pharmacology of I(CRAC) |
title_full | The Number and Position of Orai3 Units within Heteromeric Store-Operated Ca(2+) Channels Alter the Pharmacology of I(CRAC) |
title_fullStr | The Number and Position of Orai3 Units within Heteromeric Store-Operated Ca(2+) Channels Alter the Pharmacology of I(CRAC) |
title_full_unstemmed | The Number and Position of Orai3 Units within Heteromeric Store-Operated Ca(2+) Channels Alter the Pharmacology of I(CRAC) |
title_short | The Number and Position of Orai3 Units within Heteromeric Store-Operated Ca(2+) Channels Alter the Pharmacology of I(CRAC) |
title_sort | number and position of orai3 units within heteromeric store-operated ca(2+) channels alter the pharmacology of i(crac) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178029/ https://www.ncbi.nlm.nih.gov/pubmed/32252254 http://dx.doi.org/10.3390/ijms21072458 |
work_keys_str_mv | AT kappelsven thenumberandpositionoforai3unitswithinheteromericstoreoperatedca2channelsalterthepharmacologyoficrac AT kilchtatiana thenumberandpositionoforai3unitswithinheteromericstoreoperatedca2channelsalterthepharmacologyoficrac AT baurroland thenumberandpositionoforai3unitswithinheteromericstoreoperatedca2channelsalterthepharmacologyoficrac AT lochnermartin thenumberandpositionoforai3unitswithinheteromericstoreoperatedca2channelsalterthepharmacologyoficrac AT peineltchristine thenumberandpositionoforai3unitswithinheteromericstoreoperatedca2channelsalterthepharmacologyoficrac AT kappelsven numberandpositionoforai3unitswithinheteromericstoreoperatedca2channelsalterthepharmacologyoficrac AT kilchtatiana numberandpositionoforai3unitswithinheteromericstoreoperatedca2channelsalterthepharmacologyoficrac AT baurroland numberandpositionoforai3unitswithinheteromericstoreoperatedca2channelsalterthepharmacologyoficrac AT lochnermartin numberandpositionoforai3unitswithinheteromericstoreoperatedca2channelsalterthepharmacologyoficrac AT peineltchristine numberandpositionoforai3unitswithinheteromericstoreoperatedca2channelsalterthepharmacologyoficrac |