Cargando…
n–3 Polyunsaturated Fatty Acid Amides: New Avenues in the Prevention and Treatment of Breast Cancer
Over the last decades a renewed interest in n−3 very long polyunsaturated fatty acids (PUFAs), derived mainly from fish oils in the human diet, has been observed because of their potential effects against cancer diseases, including breast carcinoma. These n−3 PUFAs mainly consist of eicosapentaenoic...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178041/ https://www.ncbi.nlm.nih.gov/pubmed/32224850 http://dx.doi.org/10.3390/ijms21072279 |
_version_ | 1783525363792478208 |
---|---|
author | Giordano, Cinzia Plastina, Pierluigi Barone, Ines Catalano, Stefania Bonofiglio, Daniela |
author_facet | Giordano, Cinzia Plastina, Pierluigi Barone, Ines Catalano, Stefania Bonofiglio, Daniela |
author_sort | Giordano, Cinzia |
collection | PubMed |
description | Over the last decades a renewed interest in n−3 very long polyunsaturated fatty acids (PUFAs), derived mainly from fish oils in the human diet, has been observed because of their potential effects against cancer diseases, including breast carcinoma. These n−3 PUFAs mainly consist of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) that, alone or in combination with anticancer agents, induce cell cycle arrest, autophagy, apoptosis, and tumor growth inhibition. A large number of molecular targets of n−3 PUFAs have been identified and multiple mechanisms appear to underlie their antineoplastic activities. Evidence exists that EPA and DHA also elicit anticancer effects by the conversion to their corresponding ethanolamide derivatives in cancer cells, by binding and activation of different receptors and distinct signaling pathways. Other conjugates with serotonin or dopamine have been found to exert anti-inflammatory activities in breast tumor microenvironment, indicating the importance of these compounds as modulators of tumor epithelial/stroma interplay. The objective of this review is to provide a general overview and an update of the current n−3 PUFA derivative research and to highlight intriguing aspects of the potential therapeutic benefits of these low-toxicity compounds in breast cancer treatment and care. |
format | Online Article Text |
id | pubmed-7178041 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71780412020-04-28 n–3 Polyunsaturated Fatty Acid Amides: New Avenues in the Prevention and Treatment of Breast Cancer Giordano, Cinzia Plastina, Pierluigi Barone, Ines Catalano, Stefania Bonofiglio, Daniela Int J Mol Sci Review Over the last decades a renewed interest in n−3 very long polyunsaturated fatty acids (PUFAs), derived mainly from fish oils in the human diet, has been observed because of their potential effects against cancer diseases, including breast carcinoma. These n−3 PUFAs mainly consist of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) that, alone or in combination with anticancer agents, induce cell cycle arrest, autophagy, apoptosis, and tumor growth inhibition. A large number of molecular targets of n−3 PUFAs have been identified and multiple mechanisms appear to underlie their antineoplastic activities. Evidence exists that EPA and DHA also elicit anticancer effects by the conversion to their corresponding ethanolamide derivatives in cancer cells, by binding and activation of different receptors and distinct signaling pathways. Other conjugates with serotonin or dopamine have been found to exert anti-inflammatory activities in breast tumor microenvironment, indicating the importance of these compounds as modulators of tumor epithelial/stroma interplay. The objective of this review is to provide a general overview and an update of the current n−3 PUFA derivative research and to highlight intriguing aspects of the potential therapeutic benefits of these low-toxicity compounds in breast cancer treatment and care. MDPI 2020-03-26 /pmc/articles/PMC7178041/ /pubmed/32224850 http://dx.doi.org/10.3390/ijms21072279 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Giordano, Cinzia Plastina, Pierluigi Barone, Ines Catalano, Stefania Bonofiglio, Daniela n–3 Polyunsaturated Fatty Acid Amides: New Avenues in the Prevention and Treatment of Breast Cancer |
title | n–3 Polyunsaturated Fatty Acid Amides: New Avenues in the Prevention and Treatment of Breast Cancer |
title_full | n–3 Polyunsaturated Fatty Acid Amides: New Avenues in the Prevention and Treatment of Breast Cancer |
title_fullStr | n–3 Polyunsaturated Fatty Acid Amides: New Avenues in the Prevention and Treatment of Breast Cancer |
title_full_unstemmed | n–3 Polyunsaturated Fatty Acid Amides: New Avenues in the Prevention and Treatment of Breast Cancer |
title_short | n–3 Polyunsaturated Fatty Acid Amides: New Avenues in the Prevention and Treatment of Breast Cancer |
title_sort | n–3 polyunsaturated fatty acid amides: new avenues in the prevention and treatment of breast cancer |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178041/ https://www.ncbi.nlm.nih.gov/pubmed/32224850 http://dx.doi.org/10.3390/ijms21072279 |
work_keys_str_mv | AT giordanocinzia n3polyunsaturatedfattyacidamidesnewavenuesinthepreventionandtreatmentofbreastcancer AT plastinapierluigi n3polyunsaturatedfattyacidamidesnewavenuesinthepreventionandtreatmentofbreastcancer AT baroneines n3polyunsaturatedfattyacidamidesnewavenuesinthepreventionandtreatmentofbreastcancer AT catalanostefania n3polyunsaturatedfattyacidamidesnewavenuesinthepreventionandtreatmentofbreastcancer AT bonofigliodaniela n3polyunsaturatedfattyacidamidesnewavenuesinthepreventionandtreatmentofbreastcancer |