Cargando…

Application of Life-Dependent Material Parameters to Fatigue Life Prediction under Multiaxial and Non-Zero Mean Loading

This study presents the life-dependent material parameters concept as applied to several well-known fatigue models for the purpose of life prediction under multiaxial and non-zero mean loading. The necessity of replacing the fixed material parameters with life-dependent parameters is demonstrated. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Kluger, Krzysztof, Karolczuk, Aleksander, Derda, Szymon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178182/
https://www.ncbi.nlm.nih.gov/pubmed/32235605
http://dx.doi.org/10.3390/ma13071587
Descripción
Sumario:This study presents the life-dependent material parameters concept as applied to several well-known fatigue models for the purpose of life prediction under multiaxial and non-zero mean loading. The necessity of replacing the fixed material parameters with life-dependent parameters is demonstrated. The aim of the research here is verification of the life-dependent material parameters concept when applied to multiaxial fatigue loading with non-zero mean stress. The verification is performed with new experimental fatigue test results on a 7075-T651 aluminium alloy and S355 steel subjected to multiaxial cyclic bending and torsion loading under stress ratios equal to R = −0.5 and 0.0, respectively. The received results exhibit the significant effect of the non-zero mean value of shear stress on the fatigue life of S355 steel. The prediction of fatigue life was improved when using the life-dependent material parameters compared to the fixed material parameters.