Cargando…
Tailored PCL Scaffolds as Skin Substitutes Using Sacrificial PVP Fibers and Collagen/Chitosan Blends
Electrospinning is a versatile technique for fabrication of made-on-purpose biomimetic scaffolds. In this study, optimized electrospun fibrous membranes were produced by simultaneous electrospinning of polycaprolactone (PCL) and polyvinylpyrrolidone (PVP), followed by the selective removal of PVP fr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178267/ https://www.ncbi.nlm.nih.gov/pubmed/32230742 http://dx.doi.org/10.3390/ijms21072311 |
_version_ | 1783525416777023488 |
---|---|
author | Sadeghi-avalshahr, Ali Reza Nokhasteh, Samira Molavi, Amir Mahdi Mohammad-pour, Najmeh Sadeghi, Mohammad |
author_facet | Sadeghi-avalshahr, Ali Reza Nokhasteh, Samira Molavi, Amir Mahdi Mohammad-pour, Najmeh Sadeghi, Mohammad |
author_sort | Sadeghi-avalshahr, Ali Reza |
collection | PubMed |
description | Electrospinning is a versatile technique for fabrication of made-on-purpose biomimetic scaffolds. In this study, optimized electrospun fibrous membranes were produced by simultaneous electrospinning of polycaprolactone (PCL) and polyvinylpyrrolidone (PVP), followed by the selective removal of PVP from the PCL/PVP mesh. After aminolysis, a blend of collagen/chitosan was grafted on the surface. Physicochemical characterizations as well as in vitro evaluations were conducted using different methods. Successful cell infiltration into samples was observed. It seems that the positive trend of cell ingress originates from the proper pore size obtained after removal of pvp (from 4.46 μm before immersion in water to 33.55 μm after immersion in water for 24 h). Furthermore, grafting the surface with the collagen/chitosan blend rendered the scaffolds more biocompatible with improved attachment and spreading of keratinocyte cell lines (HaCaT). Viability evaluation through MTT assay for HDF cells did not reveal any cytotoxic effects. Antibacterial assay with Staphylococcus aureus as Gram-positive and Escherichia coli as Gram-negative species corroborated the bactericidal effects of chitosan utilized in the composition of the coated blend. The results of in vitro studies along with physicochemical characterizations reflect the great potentials of the produced samples as scaffolds for application in skin tissue engineering. |
format | Online Article Text |
id | pubmed-7178267 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71782672020-04-28 Tailored PCL Scaffolds as Skin Substitutes Using Sacrificial PVP Fibers and Collagen/Chitosan Blends Sadeghi-avalshahr, Ali Reza Nokhasteh, Samira Molavi, Amir Mahdi Mohammad-pour, Najmeh Sadeghi, Mohammad Int J Mol Sci Article Electrospinning is a versatile technique for fabrication of made-on-purpose biomimetic scaffolds. In this study, optimized electrospun fibrous membranes were produced by simultaneous electrospinning of polycaprolactone (PCL) and polyvinylpyrrolidone (PVP), followed by the selective removal of PVP from the PCL/PVP mesh. After aminolysis, a blend of collagen/chitosan was grafted on the surface. Physicochemical characterizations as well as in vitro evaluations were conducted using different methods. Successful cell infiltration into samples was observed. It seems that the positive trend of cell ingress originates from the proper pore size obtained after removal of pvp (from 4.46 μm before immersion in water to 33.55 μm after immersion in water for 24 h). Furthermore, grafting the surface with the collagen/chitosan blend rendered the scaffolds more biocompatible with improved attachment and spreading of keratinocyte cell lines (HaCaT). Viability evaluation through MTT assay for HDF cells did not reveal any cytotoxic effects. Antibacterial assay with Staphylococcus aureus as Gram-positive and Escherichia coli as Gram-negative species corroborated the bactericidal effects of chitosan utilized in the composition of the coated blend. The results of in vitro studies along with physicochemical characterizations reflect the great potentials of the produced samples as scaffolds for application in skin tissue engineering. MDPI 2020-03-27 /pmc/articles/PMC7178267/ /pubmed/32230742 http://dx.doi.org/10.3390/ijms21072311 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sadeghi-avalshahr, Ali Reza Nokhasteh, Samira Molavi, Amir Mahdi Mohammad-pour, Najmeh Sadeghi, Mohammad Tailored PCL Scaffolds as Skin Substitutes Using Sacrificial PVP Fibers and Collagen/Chitosan Blends |
title | Tailored PCL Scaffolds as Skin Substitutes Using Sacrificial PVP Fibers and Collagen/Chitosan Blends |
title_full | Tailored PCL Scaffolds as Skin Substitutes Using Sacrificial PVP Fibers and Collagen/Chitosan Blends |
title_fullStr | Tailored PCL Scaffolds as Skin Substitutes Using Sacrificial PVP Fibers and Collagen/Chitosan Blends |
title_full_unstemmed | Tailored PCL Scaffolds as Skin Substitutes Using Sacrificial PVP Fibers and Collagen/Chitosan Blends |
title_short | Tailored PCL Scaffolds as Skin Substitutes Using Sacrificial PVP Fibers and Collagen/Chitosan Blends |
title_sort | tailored pcl scaffolds as skin substitutes using sacrificial pvp fibers and collagen/chitosan blends |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178267/ https://www.ncbi.nlm.nih.gov/pubmed/32230742 http://dx.doi.org/10.3390/ijms21072311 |
work_keys_str_mv | AT sadeghiavalshahralireza tailoredpclscaffoldsasskinsubstitutesusingsacrificialpvpfibersandcollagenchitosanblends AT nokhastehsamira tailoredpclscaffoldsasskinsubstitutesusingsacrificialpvpfibersandcollagenchitosanblends AT molaviamirmahdi tailoredpclscaffoldsasskinsubstitutesusingsacrificialpvpfibersandcollagenchitosanblends AT mohammadpournajmeh tailoredpclscaffoldsasskinsubstitutesusingsacrificialpvpfibersandcollagenchitosanblends AT sadeghimohammad tailoredpclscaffoldsasskinsubstitutesusingsacrificialpvpfibersandcollagenchitosanblends |