Cargando…
Inductive transfer learning for molecular activity prediction: Next-Gen QSAR Models with MolPMoFiT
Deep neural networks can directly learn from chemical structures without extensive, user-driven selection of descriptors in order to predict molecular properties/activities with high reliability. But these approaches typically require large training sets to learn the endpoint-specific structural fea...
Autores principales: | Li, Xinhao, Fourches, Denis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178569/ https://www.ncbi.nlm.nih.gov/pubmed/33430978 http://dx.doi.org/10.1186/s13321-020-00430-x |
Ejemplares similares
-
The DNA of strategy execution: next generation PMO and strategy execution office
por: Duggal, Jack
Publicado: (2018) -
DesMol2, an Effective Tool for the Construction of Molecular Libraries and Its Application to QSAR Using Molecular Topology
por: García-Pereira, Inma, et al.
Publicado: (2019) -
Applications of the PMO platform to genetic diseases
por: Kole, Ryszard
Publicado: (2015) -
The Next Gen Leader
por: McMillan, Robert
Publicado: (2014) -
Flipping NextGen: using biological systems to characterize NextGen sequencing technologies
por: Glasscock, Jarret, et al.
Publicado: (2009)