Cargando…

Woven Natural Fibre Reinforced Composite Materials for Medical Imaging

Repeatable patient positioning is key to minimising the burden on planning radiotherapy treatment. There are very few materials commercially available which are suitable for use in all common imaging and treatment modalities such as magnetic resonance imaging (MRI), X-Ray computed tomography (CT) an...

Descripción completa

Detalles Bibliográficos
Autores principales: Morris, Robert H., Geraldi, Nicasio R., Stafford, Johanna L., Spicer, Abi, Hall, James, Bradley, Christopher, Newton, Michael I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178646/
https://www.ncbi.nlm.nih.gov/pubmed/32260351
http://dx.doi.org/10.3390/ma13071684
Descripción
Sumario:Repeatable patient positioning is key to minimising the burden on planning radiotherapy treatment. There are very few materials commercially available which are suitable for use in all common imaging and treatment modalities such as magnetic resonance imaging (MRI), X-Ray computed tomography (CT) and radiotherapy. In this article, we present several such materials based on woven natural fibres embedded in a range of different resin materials which are suitable for such applications. By investigating a range of resins and natural fibre materials in combination and evaluating their performance in terms of MRI and X-Ray imaging, we show that a woven cotton material impregnated with a two-part epoxy resin provides a 15% improvement in passage of X-Rays and has no impact on the MRI signal (unlike the 40% MRI signal attenuation from carbon fibre), whilst also retaining a flexural modulus up to 71% of that of carbon fibre. These results demonstrate that natural fibre composites produced using such materials provide desirable properties for use in patient support and positioning devices for multi-modal imaging, without the need to significantly compromise on the strength of the material.