Cargando…
Preparation of a Composite Calcium Silicate Board with Carbide Slag and Coal-Based Solid Waste Activated by Different Alkali Activators
[Image: see text] Overall performance of composite calcium silicate boards (CCSBs) was investigated to further promote their application. The alkali activators were used to fully hydrate the calcium and silicon raw materials, which further improved the comprehensive performance of the CCSBs made of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178769/ https://www.ncbi.nlm.nih.gov/pubmed/32337457 http://dx.doi.org/10.1021/acsomega.0c00709 |
Sumario: | [Image: see text] Overall performance of composite calcium silicate boards (CCSBs) was investigated to further promote their application. The alkali activators were used to fully hydrate the calcium and silicon raw materials, which further improved the comprehensive performance of the CCSBs made of four pure industrial solid wastes. Within the range of dosage in this study, single doping of different proportions of the alkali activator improved the flexural strength of the CCSB. Based on this, the mechanical properties of the CCSB were further improved as the compounded alkali activator was optimized. Flexural strength is improved when the average pore diameter was refined. The freeze–thaw cycle test shows that a compound-doped alkali activator can effectively reduce the mass loss and strength loss, thereby improving the frost resistance of this material. This research discussed an economically affordable approach to prepare the CCSB material made of industrial solid waste. |
---|