Cargando…

Reconciling Measurement and Prediction of Free and Solvated Water in Solution

[Image: see text] In 2019, Wexler showed that, by applying Raoult’s law rigorously to aqueous solutions and properly accounting for hydration of solutes, equations can be derived that accurately describe solute and solvent activity over the full range of concentrations from infinitely dilute to pure...

Descripción completa

Detalles Bibliográficos
Autores principales: Wexler, Anthony S., Patel, Kunal, Gen, Masao, Chan, Chak K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178779/
https://www.ncbi.nlm.nih.gov/pubmed/32337437
http://dx.doi.org/10.1021/acsomega.0c00311
Descripción
Sumario:[Image: see text] In 2019, Wexler showed that, by applying Raoult’s law rigorously to aqueous solutions and properly accounting for hydration of solutes, equations can be derived that accurately describe solute and solvent activity over the full range of concentrations from infinitely dilute to pure solutes. One feature of this theory is that it also predicts the amount of water that is free and the amount that is bound to the solute. In 2004 and 2005, Choi and co-workers used an electrodynamic balance to measure (i) the concentration of a range of organic and electrolyte solutes as a function of water activity and (ii) the amount of free and bound water in these solutions using the fluorescence of pyranine as a probe. In the current work, we compare the predictions of Wexler’s theory to the measurements of Choi. After the adjustments to the amount of free water obtained by these measurements, the predictions of Wexler’s theory match the measurements of Choi. The potential reasons for the adjustments are discussed.