Cargando…

Electrostatic Assembly of Porphyrin-Functionalized Porous Membrane toward Biomimetic Photocatalytic Degradation Dyes

[Image: see text] Porphyrin-based catalytic oxidation is one of the most representative biomimetic catalysis. To mimic the biomimetic catalytic oxidation of nature, a positive charged porous membrane, quaternized polysulfone (QPSf) membrane with spongelike structure, was prepared for supporting meso...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Hongbo, Wang, Mingxia, Yi, Hong, Zhang, Yanyan, Li, Xiaodan, Yan, Feng, Zhang, Lu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178780/
https://www.ncbi.nlm.nih.gov/pubmed/32337433
http://dx.doi.org/10.1021/acsomega.0c00135
Descripción
Sumario:[Image: see text] Porphyrin-based catalytic oxidation is one of the most representative biomimetic catalysis. To mimic the biomimetic catalytic oxidation of nature, a positive charged porous membrane, quaternized polysulfone (QPSf) membrane with spongelike structure, was prepared for supporting meso-tetraphenylsulfonato porphyrin (TPPS). The influence of polymer concentration, coagulation bath, and additives on the structure of the substrate membrane was explored, and the optimized membrane with porosity of 87.1% and water flux of 371 L·m(–2)·h(–1) at 0.1 MPa was obtained. Monolayer TPPS was adsorbed on the QPSf membrane surface by the electrostatic self-assembly approach, and the adsorption process followed the pseudo second-order kinetic model and Langmuir adsorption isotherm equation. The resulting TPPS@QPSf membrane showed excellent visible light response, and the photocatalytic performance for dyes was then enhanced dramatically after TPPS was immobilized on the membrane. The removal efficiencies for rhodamine B (RhB), methylene blue (MB), and methyl orange (MO) were 92.1, 94.1, and 92.1% under visible light irradiation, respectively. The primary photocatalytic degradation of the dye was a zero-order reaction, and the secondary reaction of degradation followed pseudo first-order kinetics. Finally, the TPPS@QPSf membrane can be reused for photocatalytic degradation of RhB for 10 cycles with no obvious change on removal efficiency, which indicated that this membrane is a promising material for dyeing water treatment coupled with visible light irradiation.