Cargando…

Highlights on selected microscopy techniques to study zebrafish developmental biology

Bio-imaging is a tedious task when it concerns exploring cell functions, developmental mechanisms, and other vital processes in vivo. Single-cell resolution is challenging due to different issues such as sample size, the scattering of intact and opaque tissue, pigmentation in untreated animals, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Abu-Siniyeh, Ahmed, Al-Zyoud, Walid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178987/
https://www.ncbi.nlm.nih.gov/pubmed/32346532
http://dx.doi.org/10.1186/s42826-020-00044-2
Descripción
Sumario:Bio-imaging is a tedious task when it concerns exploring cell functions, developmental mechanisms, and other vital processes in vivo. Single-cell resolution is challenging due to different issues such as sample size, the scattering of intact and opaque tissue, pigmentation in untreated animals, the movement of living organs, and maintaining the sample under physiological conditions. These factors might lead researchers to implement microscopy techniques with a suitable animal model to mimic the nature of the living cells. Zebrafish acquired its prestigious reputation in the biomedical research field due to its transparency under advanced microscopes. Therefore, various microscopy techniques, including Multi-Photon, Light-Sheet Microscopy, and Second Harmonic Generation, simplify the discovery of different types of internal functions in zebrafish. In this review, we briefly discuss three recent microscopy techniques that are being utilized because they are non-invasive in investigating developmental events in zebrafish embryo and larvae.