Cargando…
An RVE-Based Study of the Effect of Martensite Banding on Damage Evolution in Dual Phase Steels
The intent of this work is to numerically investigate the effect of second phase morphology on damage evolution characteristics of dual-phase (DP) steels. A strain gradient enhanced crystal plasticity framework is used in order to capture the deformation heterogeneity caused by lattice orientations...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179025/ https://www.ncbi.nlm.nih.gov/pubmed/32290277 http://dx.doi.org/10.3390/ma13071795 |
_version_ | 1783525587649822720 |
---|---|
author | Aşık, Emin Erkan Perdahcıoğlu, Emin Semih van den Boogaard, Ton |
author_facet | Aşık, Emin Erkan Perdahcıoğlu, Emin Semih van den Boogaard, Ton |
author_sort | Aşık, Emin Erkan |
collection | PubMed |
description | The intent of this work is to numerically investigate the effect of second phase morphology on damage evolution characteristics of dual-phase (DP) steels. A strain gradient enhanced crystal plasticity framework is used in order to capture the deformation heterogeneity caused by lattice orientations and microstructural size effects. The investigation is focused on two different martensite distributions (banded and random) that are relevant for industrial applications. The effects of martensite morphology are compared by artificially generated 2D plane strain microstructures with initial void content. The Representative volume elements (RVEs) are subjected to tensile deformation imposed by periodic boundary conditions. Evolution of voids are analyzed individually as well as a whole and characterized with respect to average axial strain. It is found that during stretching voids exhibit varying evolution characteristics due to generation of inhomogeneous strain fields within the structure. The behavior of individual voids shows that the stress-state surrounding the void is different from the imposed far field macroscopic stress-state. The voids at the ferrite martensite interface and in ferrite grains of the randomly distributed martensite grow more than in the banded structure. On the other hand, voids formed by martensite cracking growth shows an opposite trend. |
format | Online Article Text |
id | pubmed-7179025 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71790252020-04-28 An RVE-Based Study of the Effect of Martensite Banding on Damage Evolution in Dual Phase Steels Aşık, Emin Erkan Perdahcıoğlu, Emin Semih van den Boogaard, Ton Materials (Basel) Article The intent of this work is to numerically investigate the effect of second phase morphology on damage evolution characteristics of dual-phase (DP) steels. A strain gradient enhanced crystal plasticity framework is used in order to capture the deformation heterogeneity caused by lattice orientations and microstructural size effects. The investigation is focused on two different martensite distributions (banded and random) that are relevant for industrial applications. The effects of martensite morphology are compared by artificially generated 2D plane strain microstructures with initial void content. The Representative volume elements (RVEs) are subjected to tensile deformation imposed by periodic boundary conditions. Evolution of voids are analyzed individually as well as a whole and characterized with respect to average axial strain. It is found that during stretching voids exhibit varying evolution characteristics due to generation of inhomogeneous strain fields within the structure. The behavior of individual voids shows that the stress-state surrounding the void is different from the imposed far field macroscopic stress-state. The voids at the ferrite martensite interface and in ferrite grains of the randomly distributed martensite grow more than in the banded structure. On the other hand, voids formed by martensite cracking growth shows an opposite trend. MDPI 2020-04-10 /pmc/articles/PMC7179025/ /pubmed/32290277 http://dx.doi.org/10.3390/ma13071795 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Aşık, Emin Erkan Perdahcıoğlu, Emin Semih van den Boogaard, Ton An RVE-Based Study of the Effect of Martensite Banding on Damage Evolution in Dual Phase Steels |
title | An RVE-Based Study of the Effect of Martensite Banding on Damage Evolution in Dual Phase Steels |
title_full | An RVE-Based Study of the Effect of Martensite Banding on Damage Evolution in Dual Phase Steels |
title_fullStr | An RVE-Based Study of the Effect of Martensite Banding on Damage Evolution in Dual Phase Steels |
title_full_unstemmed | An RVE-Based Study of the Effect of Martensite Banding on Damage Evolution in Dual Phase Steels |
title_short | An RVE-Based Study of the Effect of Martensite Banding on Damage Evolution in Dual Phase Steels |
title_sort | rve-based study of the effect of martensite banding on damage evolution in dual phase steels |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179025/ https://www.ncbi.nlm.nih.gov/pubmed/32290277 http://dx.doi.org/10.3390/ma13071795 |
work_keys_str_mv | AT asıkeminerkan anrvebasedstudyoftheeffectofmartensitebandingondamageevolutionindualphasesteels AT perdahcıoglueminsemih anrvebasedstudyoftheeffectofmartensitebandingondamageevolutionindualphasesteels AT vandenboogaardton anrvebasedstudyoftheeffectofmartensitebandingondamageevolutionindualphasesteels AT asıkeminerkan rvebasedstudyoftheeffectofmartensitebandingondamageevolutionindualphasesteels AT perdahcıoglueminsemih rvebasedstudyoftheeffectofmartensitebandingondamageevolutionindualphasesteels AT vandenboogaardton rvebasedstudyoftheeffectofmartensitebandingondamageevolutionindualphasesteels |