Cargando…
Evaluating Autoencoder-Based Featurization and Supervised Learning for Protein Decoy Selection
Rapid growth in molecular structure data is renewing interest in featurizing structure. Featurizations that retain information on biological activity are particularly sought for protein molecules, where decades of research have shown that indeed structure encodes function. Research on featurization...
Autores principales: | Alam, Fardina Fathmiul, Rahman, Taseef, Shehu, Amarda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179114/ https://www.ncbi.nlm.nih.gov/pubmed/32143444 http://dx.doi.org/10.3390/molecules25051146 |
Ejemplares similares
-
Data Size and Quality Matter: Generating Physically-Realistic Distance Maps of Protein Tertiary Structures
por: Alam, Fardina Fathmiul, et al.
Publicado: (2022) -
Unsupervised and Supervised Learning over the Energy Landscape for Protein Decoy Selection
por: Akhter, Nasrin, et al.
Publicado: (2019) -
Generative Adversarial Learning of Protein Tertiary Structures
por: Rahman, Taseef, et al.
Publicado: (2021) -
From Extraction of Local Structures of Protein Energy Landscapes to Improved Decoy Selection in Template-Free Protein Structure Prediction
por: Akhter, Nasrin, et al.
Publicado: (2018) -
Decoy selection for protein structure prediction via extreme gradient boosting and ranking
por: Akhter, Nasrin, et al.
Publicado: (2020)