Cargando…

Reducing-End Functionalization of 2,5-Anhydro-d-mannofuranose-Linked Chitooligosaccharides by Dioxyamine: Synthesis and Characterization

The nitrous acid depolymerization of chitosan enables the synthesis of singular chitosan oligosaccharides (COS) since their reducing-end unit is composed of 2,5-anhydro-d-mannofuranose (amf). In the present study, we describe a chemical method for the reducing-end conjugation of COS-amf by the comme...

Descripción completa

Detalles Bibliográficos
Autores principales: Coudurier, Maxence, Faivre, Jimmy, Crépet, Agnès, Ladavière, Catherine, Delair, Thierry, Schatz, Christophe, Trombotto, Stéphane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179158/
https://www.ncbi.nlm.nih.gov/pubmed/32143349
http://dx.doi.org/10.3390/molecules25051143
Descripción
Sumario:The nitrous acid depolymerization of chitosan enables the synthesis of singular chitosan oligosaccharides (COS) since their reducing-end unit is composed of 2,5-anhydro-d-mannofuranose (amf). In the present study, we describe a chemical method for the reducing-end conjugation of COS-amf by the commercially available dioxyamine O,O′-1,3-propanediylbishydroxylamine in high mass yields. The chemical structure of resulting dioxyamine-linked COS-amf synthesized by both oximation and reductive amination ways were fully characterized by (1)H- and (13)C-NMR spectroscopies and MALDI-TOF mass spectrometry. The coupling of chemically attractive linkers such as dioxyamines at the reducing end of COS-amf forms a relevant strategy for the development of advanced functional COS-based conjugates.