Cargando…
Photoluminescent Spectral Broadening of Lead Halide Perovskite Nanocrystals Investigated by Emission Wavelength Dependent Lifetime
Despite intensive efforts, the fluorescence of perovskite nanocrystals (NCs) still suffers from a poor color purity, which limits the applications in light emitting and multicolor display. A deep understanding on the fundamental of the photoluminescent (PL) spectral broadening is thus of great signi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179216/ https://www.ncbi.nlm.nih.gov/pubmed/32143454 http://dx.doi.org/10.3390/molecules25051151 |
Sumario: | Despite intensive efforts, the fluorescence of perovskite nanocrystals (NCs) still suffers from a poor color purity, which limits the applications in light emitting and multicolor display. A deep understanding on the fundamental of the photoluminescent (PL) spectral broadening is thus of great significance. Herein, the PL decay curves of the CsPbCl(x)Br(3-x) NCs are monitored at different wavelengths covering the entire PL band. Moreover, energy relaxation time τ and radiative recombination time β are obtained by numerical fittings. The dependences of τ and 1/β on the detection wavelength agree well with the steady-state PL spectrum, indicating the observed PL broadening is an intrinsic effect due to the resonance and off-resonance exciton radiative recombination processes. This work not only provides a new analysis method for time-resolved PL spectra of perovskites, but also gains a deep insight into the spectral broadening of the lead halide perovskite NCs. |
---|