Cargando…
CFSP: a collaborative frequent sequence pattern discovery algorithm for nucleic acid sequence classification
BACKGROUND: Conserved nucleic acid sequences play an essential role in transcriptional regulation. The motifs/templates derived from nucleic acid sequence datasets are usually used as biomarkers to predict biochemical properties such as protein binding sites or to identify specific non-coding RNAs....
Autor principal: | Peng, He |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179567/ https://www.ncbi.nlm.nih.gov/pubmed/32341900 http://dx.doi.org/10.7717/peerj.8965 |
Ejemplares similares
-
EGAsubmitter: A software to automate submission of nucleic acid sequencing data to the European Genome-phenome Archive
por: Viviani, Marco, et al.
Publicado: (2023) -
Quantum-effective exact multiple patterns matching algorithms for biological sequences
por: Soni, Kapil Kumar, et al.
Publicado: (2022) -
Ribovirus classification by a polymerase barcode sequence
por: Babaian, Artem, et al.
Publicado: (2022) -
Barnaba: software for analysis of nucleic acid structures and trajectories
por: Bottaro, Sandro, et al.
Publicado: (2019) -
16S-ITGDB: An Integrated Database for Improving Species Classification of Prokaryotic 16S Ribosomal RNA Sequences
por: Hsieh, Yu-Peng, et al.
Publicado: (2022)