Cargando…
Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems
Plastic mulch films are used globally in crop production but incur considerable disposal and environmental pollution issues. Biodegradable plastic mulch films (BDMs), an alternative to polyethylene (PE)-based films, are designed to be tilled into the soil where they are expected to be mineralized to...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179572/ https://www.ncbi.nlm.nih.gov/pubmed/32341903 http://dx.doi.org/10.7717/peerj.9015 |
_version_ | 1783525675624300544 |
---|---|
author | Bandopadhyay, Sreejata Sintim, Henry Y. DeBruyn, Jennifer M. |
author_facet | Bandopadhyay, Sreejata Sintim, Henry Y. DeBruyn, Jennifer M. |
author_sort | Bandopadhyay, Sreejata |
collection | PubMed |
description | Plastic mulch films are used globally in crop production but incur considerable disposal and environmental pollution issues. Biodegradable plastic mulch films (BDMs), an alternative to polyethylene (PE)-based films, are designed to be tilled into the soil where they are expected to be mineralized to carbon dioxide, water and microbial biomass. However, insufficient research regarding the impacts of repeated soil incorporation of BDMs on soil microbial communities has partly contributed to limited adoption of BDMs. In this study, we evaluated the effects of BDM incorporation on soil microbial community structure and function over two years in two geographical locations: Knoxville, TN, and in Mount Vernon, WA, USA. Treatments included four plastic BDMs (three commercially available and one experimental film), a biodegradable cellulose paper mulch, a non-biodegradable PE mulch and a no mulch plot. Bacterial community structure determined using 16S rRNA gene amplicon sequencing revealed significant differences by location and season. Differences in bacterial communities by mulch treatment were not significant for any season in either location, except for Fall 2015 in WA where differences were observed between BDMs and no-mulch plots. Extracellular enzyme assays were used to characterize communities functionally, revealing significant differences by location and sampling season in both TN and WA but minimal differences between BDMs and PE treatments. Overall, BDMs had comparable influences on soil microbial communities to PE mulch films. |
format | Online Article Text |
id | pubmed-7179572 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-71795722020-04-27 Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems Bandopadhyay, Sreejata Sintim, Henry Y. DeBruyn, Jennifer M. PeerJ Agricultural Science Plastic mulch films are used globally in crop production but incur considerable disposal and environmental pollution issues. Biodegradable plastic mulch films (BDMs), an alternative to polyethylene (PE)-based films, are designed to be tilled into the soil where they are expected to be mineralized to carbon dioxide, water and microbial biomass. However, insufficient research regarding the impacts of repeated soil incorporation of BDMs on soil microbial communities has partly contributed to limited adoption of BDMs. In this study, we evaluated the effects of BDM incorporation on soil microbial community structure and function over two years in two geographical locations: Knoxville, TN, and in Mount Vernon, WA, USA. Treatments included four plastic BDMs (three commercially available and one experimental film), a biodegradable cellulose paper mulch, a non-biodegradable PE mulch and a no mulch plot. Bacterial community structure determined using 16S rRNA gene amplicon sequencing revealed significant differences by location and season. Differences in bacterial communities by mulch treatment were not significant for any season in either location, except for Fall 2015 in WA where differences were observed between BDMs and no-mulch plots. Extracellular enzyme assays were used to characterize communities functionally, revealing significant differences by location and sampling season in both TN and WA but minimal differences between BDMs and PE treatments. Overall, BDMs had comparable influences on soil microbial communities to PE mulch films. PeerJ Inc. 2020-04-20 /pmc/articles/PMC7179572/ /pubmed/32341903 http://dx.doi.org/10.7717/peerj.9015 Text en ©2020 Bandopadhyay et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Agricultural Science Bandopadhyay, Sreejata Sintim, Henry Y. DeBruyn, Jennifer M. Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems |
title | Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems |
title_full | Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems |
title_fullStr | Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems |
title_full_unstemmed | Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems |
title_short | Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems |
title_sort | effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems |
topic | Agricultural Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179572/ https://www.ncbi.nlm.nih.gov/pubmed/32341903 http://dx.doi.org/10.7717/peerj.9015 |
work_keys_str_mv | AT bandopadhyaysreejata effectsofbiodegradableplasticfilmmulchingonsoilmicrobialcommunitiesintwoagroecosystems AT sintimhenryy effectsofbiodegradableplasticfilmmulchingonsoilmicrobialcommunitiesintwoagroecosystems AT debruynjenniferm effectsofbiodegradableplasticfilmmulchingonsoilmicrobialcommunitiesintwoagroecosystems |