Cargando…
Predicting Drug-Disease Associations via Multi-Task Learning Based on Collective Matrix Factorization
Identifying drug-disease associations is integral to drug development. Computationally prioritizing candidate drug-disease associations has attracted growing attention due to its contribution to reducing the cost of laboratory screening. Drug-disease associations involve different association types,...
Autores principales: | Huang, Feng, Qiu, Yang, Li, Qiaojun, Liu, Shichao, Ni, Fuchuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179666/ https://www.ncbi.nlm.nih.gov/pubmed/32373595 http://dx.doi.org/10.3389/fbioe.2020.00218 |
Ejemplares similares
-
Multi-Task Learning Based on Stochastic Configuration Networks
por: Dong, Xue-Mei, et al.
Publicado: (2022) -
Corrigendum: Multi-task learning based on Stochastic Configuration Networks
por: Dong, Xue-Mei, et al.
Publicado: (2023) -
Prediction of drug sensitivity based on multi-omics data using deep learning and similarity network fusion approaches
por: Liu, Xiao-Ying, et al.
Publicado: (2023) -
A Multi-Task Deep Learning Method for Detection of Meniscal Tears in MRI Data from the Osteoarthritis Initiative Database
por: Tack, Alexander, et al.
Publicado: (2021) -
Reorganization of Muscle Coordination Underlying Motor Learning in Cycling Tasks
por: Torricelli, Diego, et al.
Publicado: (2020)