Cargando…
Development and Validation of a Deep Learning Radiomics Model Predicting Lymph Node Status in Operable Cervical Cancer
Aim: To develop and validate a deep learning radiomics model, which could predict the lymph node metastases preoperatively in cervical cancer patients. Patients and methods: We included a cohort of 226 pathological proven operable cervical cancer patients in two academic medical institutions from De...
Autores principales: | Dong, Taotao, Yang, Chun, Cui, Baoxia, Zhang, Ting, Sun, Xiubin, Song, Kun, Wang, Linlin, Kong, Beihua, Yang, Xingsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179686/ https://www.ncbi.nlm.nih.gov/pubmed/32373511 http://dx.doi.org/10.3389/fonc.2020.00464 |
Ejemplares similares
-
Preliminary study on CT contrast-enhanced radiomics for predicting central cervical lymph node status in patients with thyroid nodules
por: Kong, Dan, et al.
Publicado: (2023) -
Radiomics Analysis of Multiparametric MRI for the Preoperative Prediction of Lymph Node Metastasis in Cervical Cancer
por: Hou, Lina, et al.
Publicado: (2020) -
Development of a Novel Deep Learning-Based Prediction Model for the Prognosis of Operable Cervical Cancer
por: Dong, Taotao, et al.
Publicado: (2022) -
Ultrasound radiomics based on axillary lymph nodes images for predicting lymph node metastasis in breast cancer
por: Tang, Yu-Long, et al.
Publicado: (2023) -
Deep Learning Radiomics to Predict Regional Lymph Node Staging for Hilar Cholangiocarcinoma
por: Wang, Yubizhuo, et al.
Publicado: (2021)