Cargando…
Improving predictive models for Alzheimer’s disease using GWAS data by incorporating misclassified samples modeling
Late-onset Alzheimer’s Disease (LOAD) is the most common form of dementia in the elderly. Genome-wide association studies (GWAS) for LOAD have open new avenues to identify genetic causes and to provide diagnostic tools for early detection. Although several predictive models have been proposed using...
Autores principales: | Romero-Rosales, Brissa-Lizbeth, Tamez-Pena, Jose-Gerardo, Nicolini, Humberto, Moreno-Treviño, Maria-Guadalupe, Trevino, Victor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179850/ https://www.ncbi.nlm.nih.gov/pubmed/32324812 http://dx.doi.org/10.1371/journal.pone.0232103 |
Ejemplares similares
-
Improved Diagnostic Multimodal Biomarkers for Alzheimer's Disease and Mild Cognitive Impairment
por: Martínez-Torteya, Antonio, et al.
Publicado: (2015) -
Identifying novel associations in GWAS by hierarchical Bayesian latent variable detection of differentially misclassified phenotypes
por: Shafquat, Afrah, et al.
Publicado: (2020) -
Survey design and analysis considerations when utilizing misclassified sampling strata
por: Mitani, Aya A., et al.
Publicado: (2021) -
Multivariate Radiological-Based Models for the Prediction of Future Knee Pain: Data from the OAI
por: Galván-Tejada, Jorge I., et al.
Publicado: (2015) -
Identification of outcome-related driver mutations in cancer using conditional co-occurrence distributions
por: Treviño, Victor, et al.
Publicado: (2017)