Cargando…

Interleukin-10 control of pre-miR155 maturation involves CELF2

The anti-inflammatory cytokine interleukin-10 (IL10) is essential for attenuating inflammatory responses, which includes reducing the expression of pro-inflammatory microRNA-155 (miR155) in lipopolysaccharide (LPS) activated macrophages. miR155 enhances the expression of pro-inflammatory cytokines s...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoon, Jeff S. J., Wu, Mike K., Zhu, Tian Hao, Zhao, Helen, Cheung, Sylvia T., Chamberlain, Thomas C., Mui, Alice L-F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179890/
https://www.ncbi.nlm.nih.gov/pubmed/32324763
http://dx.doi.org/10.1371/journal.pone.0231639
Descripción
Sumario:The anti-inflammatory cytokine interleukin-10 (IL10) is essential for attenuating inflammatory responses, which includes reducing the expression of pro-inflammatory microRNA-155 (miR155) in lipopolysaccharide (LPS) activated macrophages. miR155 enhances the expression of pro-inflammatory cytokines such as TNFα and suppresses expression of anti-inflammatory molecules such as SHIP1 and SOCS1. We previously found that IL10 interfered with the maturation of pre-miR155 to miR155. To understand the mechanism by which IL10 interferes with pre-miR155 maturation we isolated proteins that associate with pre-miR155 in response to IL10 in macrophages. We identified CELF2, a member of the CUGBP, ELAV-Like Family (CELF) family of RNA binding proteins, as protein whose association with pre-miR155 increased in IL10 treated cells. CRISPR-Cas9 mediated knockdown of CELF2 impaired IL10’s ability to inhibit both miR155 expression and TNFα expression.