Cargando…

The complete mitochondrial genome of the endangered Assam Roofed Turtle, Pangshura sylhetensis (Testudines: Geoemydidae): Genomic features and phylogeny

The Assam Roofed Turtle, Pangshura sylhetensis is an endangered and least studied species endemic to India and Bangladesh. The present study decodes the first complete mitochondrial genome of P. sylhetensis (16,568 bp) by using next-generation sequencing. The assembly encodes 13 protein-coding genes...

Descripción completa

Detalles Bibliográficos
Autores principales: Kundu, Shantanu, Kumar, Vikas, Tyagi, Kaomud, Chandra, Kailash
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179895/
https://www.ncbi.nlm.nih.gov/pubmed/32324729
http://dx.doi.org/10.1371/journal.pone.0225233
Descripción
Sumario:The Assam Roofed Turtle, Pangshura sylhetensis is an endangered and least studied species endemic to India and Bangladesh. The present study decodes the first complete mitochondrial genome of P. sylhetensis (16,568 bp) by using next-generation sequencing. The assembly encodes 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and one control region (CR). Most of the genes were encoded on the majority strand, except NADH dehydrogenase subunit 6 (nad6) and eight tRNAs. All PCGs start with an ATG initiation codon, except for Cytochrome oxidase subunit 1 (cox1) and NADH dehydrogenase subunit 5 (nad5), which both start with GTG codon. The study also found the typical cloverleaf secondary structures in most of the predicted tRNA structures, except for serine (trnS1) which lacks of conventional DHU arm and loop. Both Bayesian and maximum-likelihood phylogenetic inference using 13 concatenated PCGs demonstrated strong support for the monophyly of all 52 Testudines species within their respective families and revealed Batagur trivittata as the nearest neighbor of P. sylhetensis. The mitogenomic phylogeny with other amniotes is congruent with previous research, supporting the sister relationship of Testudines and Archosaurians (birds and crocodilians). Additionally, the mitochondrial Gene Order (GO) analysis indicated plesiomorphy with the typical vertebrate GO in most of the Testudines species.