Cargando…
Generalizing to generalize: Humans flexibly switch between compositional and conjunctive structures during reinforcement learning
Humans routinely face novel environments in which they have to generalize in order to act adaptively. However, doing so involves the non-trivial challenge of deciding which aspects of a task domain to generalize. While it is sometimes appropriate to simply re-use a learned behavior, often adaptive g...
Autores principales: | Franklin, Nicholas T., Frank, Michael J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179934/ https://www.ncbi.nlm.nih.gov/pubmed/32282795 http://dx.doi.org/10.1371/journal.pcbi.1007720 |
Ejemplares similares
-
Reward-predictive representations generalize across tasks in reinforcement learning
por: Lehnert, Lucas, et al.
Publicado: (2020) -
Curriculum learning for human compositional generalization
por: Dekker, Ronald B., et al.
Publicado: (2022) -
Grid Cells, Place Cells, and Geodesic Generalization for Spatial Reinforcement Learning
por: Gustafson, Nicholas J., et al.
Publicado: (2011) -
Entorhinal and ventromedial prefrontal cortices abstract and generalize the structure of reinforcement learning problems
por: Baram, Alon Boaz, et al.
Publicado: (2021) -
Compositional clustering in task structure learning
por: Franklin, Nicholas T., et al.
Publicado: (2018)