Cargando…

DRAMS: A tool to detect and re-align mixed-up samples for integrative studies of multi-omics data

Studies of complex disorders benefit from integrative analyses of multiple omics data. Yet, sample mix-ups frequently occur in multi-omics studies, weakening statistical power and risking false findings. Accurately aligning sample information, genotype, and corresponding omics data is critical for i...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Yi, Giase, Gina, Grennan, Kay, Shieh, Annie W., Xia, Yan, Han, Lide, Wang, Quan, Wei, Qiang, Chen, Rui, Liu, Sihan, White, Kevin P., Chen, Chao, Li, Bingshan, Liu, Chunyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179940/
https://www.ncbi.nlm.nih.gov/pubmed/32282793
http://dx.doi.org/10.1371/journal.pcbi.1007522
Descripción
Sumario:Studies of complex disorders benefit from integrative analyses of multiple omics data. Yet, sample mix-ups frequently occur in multi-omics studies, weakening statistical power and risking false findings. Accurately aligning sample information, genotype, and corresponding omics data is critical for integrative analyses. We developed DRAMS (https://github.com/Yi-Jiang/DRAMS) to Detect and Re-Align Mixed-up Samples to address the sample mix-up problem. It uses a logistic regression model followed by a modified topological sorting algorithm to identify the potential true IDs based on data relationships of multi-omics. According to tests using simulated data, the more types of omics data used or the smaller the proportion of mix-ups, the better that DRAMS performs. Applying DRAMS to real data from the PsychENCODE BrainGVEX project, we detected and corrected 201 (12.5% of total data generated) mix-ups. Of the 21 mix-ups involving errors of racial identity, DRAMS re-assigned all data to the correct racial group in the 1000 Genomes project. In doing so, quantitative trait loci (QTL) (FDR<0.01) increased by an average of 1.62-fold. The use of DRAMS in multi-omics studies will strengthen statistical power of the study and improve quality of the results. Even though very limited studies have multi-omics data in place, we expect such data will increase quickly with the needs of DRAMS.