Cargando…
Single-Cell Transcriptome Data Clustering via Multinomial Modeling and Adaptive Fuzzy K-Means Algorithm
Single-cell RNA sequencing technologies have enabled us to study tissue heterogeneity at cellular resolution. Fast-developing sequencing platforms like droplet-based sequencing make it feasible to parallel process thousands of single cells effectively. Although a unique molecular identifier (UMI) ca...
Autores principales: | Chen, Liang, Wang, Weinan, Zhai, Yuyao, Deng, Minghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180207/ https://www.ncbi.nlm.nih.gov/pubmed/32362908 http://dx.doi.org/10.3389/fgene.2020.00295 |
Ejemplares similares
-
Deep soft K-means clustering with self-training for single-cell RNA sequence data
por: Chen, Liang, et al.
Publicado: (2020) -
Research on Mental Stress Recognition of Depressive Disorders in Patients With Androgenic Alopecia Based on Machine Learning and Fuzzy K-Means Clustering
por: Li, Yulong, et al.
Publicado: (2021) -
Integrating Deep Supervised, Self-Supervised and Unsupervised Learning for Single-Cell RNA-seq Clustering and Annotation
por: Chen, Liang, et al.
Publicado: (2020) -
The Comparison of Clustering Algorithms K-Means and Fuzzy C-Means for Segmentation Retinal Blood Vessels
por: Wiharto, Wiharto, et al.
Publicado: (2020) -
D3K: The Dissimilarity-Density-Dynamic Radius K-means Clustering Algorithm for scRNA-Seq Data
por: Liu, Guoyun, et al.
Publicado: (2022)