Cargando…
Improved Predictive Tools for Structural Properties of Metal–Organic Frameworks
The accurate determination of structural parameters is necessary to understand the electronic and magnetic properties of metal–organic frameworks (MOFs) and is a first step toward accurate calculations of electronic structure and function for separations and catalysis. Theoretical structural determi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180546/ https://www.ncbi.nlm.nih.gov/pubmed/32231071 http://dx.doi.org/10.3390/molecules25071552 |
_version_ | 1783525844166115328 |
---|---|
author | Choudhuri, Indrani Truhlar, Donald G. |
author_facet | Choudhuri, Indrani Truhlar, Donald G. |
author_sort | Choudhuri, Indrani |
collection | PubMed |
description | The accurate determination of structural parameters is necessary to understand the electronic and magnetic properties of metal–organic frameworks (MOFs) and is a first step toward accurate calculations of electronic structure and function for separations and catalysis. Theoretical structural determination of metal-organic frameworks is particularly challenging because they involve ionic, covalent, and noncovalent interactions, which must be treated in a balanced fashion. Here, we apply a diverse group of local exchange-correlation functionals (PBE, PBEsol, PBE-D2, PBE-D3, vdW-DF2, SOGGA, MN15-L, revM06-L, SCAN, and revTPSS) to a broad test set of MOFs to seek the most accurate functionals to study various structural aspects of porous solids, in particular to study lattice constants, unit cell volume, two types of pore size characteristics, bond lengths, bond angles, and torsional angles). The recently developed meta functionals revM06-L and SCAN, without adding any molecular mechanics terms, are able to predict more accurate structures than previously recommended functionals, both those without molecular mechanics terms (PBE, PBEsol, vdW-DF2, and revTPSS) and those with them (PBE-D2 and PBE-D3). To provide a broader test, these two functionals are also tested for lattice constants and band gaps of unary, binary, and ternary semiconductors. |
format | Online Article Text |
id | pubmed-7180546 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71805462020-05-01 Improved Predictive Tools for Structural Properties of Metal–Organic Frameworks Choudhuri, Indrani Truhlar, Donald G. Molecules Article The accurate determination of structural parameters is necessary to understand the electronic and magnetic properties of metal–organic frameworks (MOFs) and is a first step toward accurate calculations of electronic structure and function for separations and catalysis. Theoretical structural determination of metal-organic frameworks is particularly challenging because they involve ionic, covalent, and noncovalent interactions, which must be treated in a balanced fashion. Here, we apply a diverse group of local exchange-correlation functionals (PBE, PBEsol, PBE-D2, PBE-D3, vdW-DF2, SOGGA, MN15-L, revM06-L, SCAN, and revTPSS) to a broad test set of MOFs to seek the most accurate functionals to study various structural aspects of porous solids, in particular to study lattice constants, unit cell volume, two types of pore size characteristics, bond lengths, bond angles, and torsional angles). The recently developed meta functionals revM06-L and SCAN, without adding any molecular mechanics terms, are able to predict more accurate structures than previously recommended functionals, both those without molecular mechanics terms (PBE, PBEsol, vdW-DF2, and revTPSS) and those with them (PBE-D2 and PBE-D3). To provide a broader test, these two functionals are also tested for lattice constants and band gaps of unary, binary, and ternary semiconductors. MDPI 2020-03-28 /pmc/articles/PMC7180546/ /pubmed/32231071 http://dx.doi.org/10.3390/molecules25071552 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Choudhuri, Indrani Truhlar, Donald G. Improved Predictive Tools for Structural Properties of Metal–Organic Frameworks |
title | Improved Predictive Tools for Structural Properties of Metal–Organic Frameworks |
title_full | Improved Predictive Tools for Structural Properties of Metal–Organic Frameworks |
title_fullStr | Improved Predictive Tools for Structural Properties of Metal–Organic Frameworks |
title_full_unstemmed | Improved Predictive Tools for Structural Properties of Metal–Organic Frameworks |
title_short | Improved Predictive Tools for Structural Properties of Metal–Organic Frameworks |
title_sort | improved predictive tools for structural properties of metal–organic frameworks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180546/ https://www.ncbi.nlm.nih.gov/pubmed/32231071 http://dx.doi.org/10.3390/molecules25071552 |
work_keys_str_mv | AT choudhuriindrani improvedpredictivetoolsforstructuralpropertiesofmetalorganicframeworks AT truhlardonaldg improvedpredictivetoolsforstructuralpropertiesofmetalorganicframeworks |