Cargando…
Development of Electronic Nose for Qualitative and Quantitative Monitoring of Volatile Flammable Liquids
A real-time electric nose (E-nose) with a metal oxide sensor (MOS) array was developed to monitor 5 highly flammable liquids (ethanol, tetrahydrofuran, turpentine, lacquer thinner, and gasoline) in this work. We found that temperature had a significant impact on the test results and temperature cont...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180552/ https://www.ncbi.nlm.nih.gov/pubmed/32218148 http://dx.doi.org/10.3390/s20071817 |
Sumario: | A real-time electric nose (E-nose) with a metal oxide sensor (MOS) array was developed to monitor 5 highly flammable liquids (ethanol, tetrahydrofuran, turpentine, lacquer thinner, and gasoline) in this work. We found that temperature had a significant impact on the test results and temperature control could efficiently improve the performance of our E-nose. The results of our qualitative analysis showed that principal component analysis (PCA) could not efficiently distinguish these samples compared to a back-propagation artificial neural network (BP-ANN) which had a 100% accuracy rate on the test samples. Quantitative analysis was performed by regression analysis and the average errors were 9.1%–18.4%. In addition, through anti-interference training, the E-nose could filter out the potential false alarm caused by mosquito repellent, perfume and hair jelly. |
---|